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Abstract 

In this paper potential dam sites were identified using remote sensing and GIS. Determinant factors viz., precipitation, 
slope, flow accumulation, soil texture, land use, and geology were analyzed in the GIS domain. Each factor was reclas-
sified and assigned the suitable fuzzy membership values depending on their influence on the dam site potential. 
All the fuzzified layers were overlaid using the "Fuzzy Overlay" tool in the GIS platform. Initially, a total of 26 dam sites 
were proposed. Only seven sites were selected depending on their proximity to nearby dams, settlements, and flow 
accumulation. The selected dam sites with their flow accumulation, elevation, precipitation, slope, stream order, maxi-
mum storage capacity, and the time of concentration were calculated. The determinant factors of suitable dam sites 
were subjected to the ordinary least squared (OLS) regression to understand the relationship of factors and the poten-
tial dam sites. The OLS regression model statistics showed that all factors are positively correlated with potential dam 
sites except slope (as low slopes are more suitable for dam construction). The OLS regression diagnostics showed that 
the multiple R squares values and the adjusted R-square values were found to be 0.835894 and 0.872153, respectively. 
In this study, Koenker’s (BP) statistic was found statistically insignificant (p > 0.01), proving that the relationship model 
is consistent. Jarque–Bera statistic was conducted and also found to be statistically insignificant (p > 0.01) indicating 
the Gaussian distribution of residuals. This proves that the fuzzy logic approach coupled with OLS regression is a pow-
erful tool in deciphering the potential dam sites and can be applied at a regional and continental scale.
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Introduction
People of the East African countries (Ethiopia, Tanza-
nia, Kenya, and Uganda) are affected much by hunger 
or under-nourishment. The need to attain food security 
(by increasing agricultural productivity) is nowhere more 
pressing than in Ethiopia, which has become a typical 
case of recurring famines and food insecurity and is a 
major recipient of foreign food aid (Lire [1]). Agriculture 
is the backbone of the economy in Ethiopia and it relies 
largely on rainfall (rain-fed agriculture). Agriculture 

contributes approximately 75% of export commodity val-
ues, 43% of the GDP, and about 80% of employment [2]. 
The erratic nature of rainfall coupled with rain-fed agri-
culture is the main reason for widespread food insecurity 
in Ethiopia. Abduselam [3] has documented that recur-
rent drought in Ethiopia has a clear link with food secu-
rity and famine. According to Haile [4], droughts occur 
every 8–10  years in Ethiopia leading to severe conse-
quences for food production.

The small-scale irrigation development in Ethiopia 
pre-dates the Axum empire more than 2000  years ago 
[5]. However, it might have been less important because 
rain-fed agriculture, coupled with small-scale irriga-
tion was found sufficient to sustain ancient popula-
tions [6]. However, with increasing food demand due to 
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increasing population coupled with increasing pressure 
on rain-fed agriculture the vital role of irrigation devel-
opment is inevitable. Timely water supplies coupled 
with other appropriate agricultural inputs can push up 
agricultural productivity [7]. The government of Ethio-
pia has increased its focus on water resource utilization 
and development to curb food insecurity (FDRE, 2000). 
Its water policy stresses the increased and efficient use of 
small-scale irrigation through the building of small dams 
and the diversion of rivers.

Remote sensing offers valuable and huge data for 
hydrological studies [8–12]. The geospatial technology is 
strongly used in the dam site selection, however, its effec-
tiveness in a geographical space may differ [13]. Singh 
et al. [14] used several remote sensing imageries to iden-
tify the potential dam sites. In their study, parameters 
like soil infiltration rate (moderate), slope (below 10%), 
soil type (sandy clay loam) and land use (shrubs and 
river beds) were used in selecting the sites. Thereafter, 
14 potential dam sites were found which could practica-
bly be used for water collecting and agriculture. Ibrahim 
et  al. [15] identified potential sites for the possibility of 
constructing dams, including generating a model builder 
in GIS domain. This model combined various factors, 
such as land cover/use, slope, stream order, runoff poten-
tial, hydrology and soil quality to ascertain the suitability 
of the location for rainwater harvesting.

Forzieri et  al. [9] assess the suitability of dam sites 
for water harvesting in arid areas. Geospatial technol-
ogy has been used to assign the location of water har-
vesting structures across streams/watersheds (Kumar, 
2009). Remote sensing images, digital elevation models, 
and topographic maps have been used successfully for 
the proposition of dam site locations [16]. Information 
related to terrain surface, slope, precipitation, drainage, 
land use, and watershed boundaries are important for 
dam site selection, which can be easily obtained from 
remotely sensed images.

This paper was motivated to contribute to this aspect 
and help with decision-making support for dam site 
selection in Farta Woreda, Ethiopia. The paper aims to 
develop a remote sensing and GIS-based network for 
a better understanding of various factors influencing 
the selection of the appropriate dam sites for irrigation 
purposes in the case of Farta Woreda, Ethiopia. In solv-
ing customary overlay analysis applications like models 
for site suitability and selection, fuzzy logic is an effi-
cient overlay analysis technique. Fuzzy logic provides 
an effective technique for tackling inaccuracies arising 
in attributes and the geometry of spatial data. Integrat-
ing fuzzy overlay helps decision-makers in making pro-
ductive decisions regarding this fuzziness. In this paper 
fuzzy overlay uses fuzzy membership classes to delineate 

suitable dam sites. Furthermore, OLS regression was 
done to understand the extent of relationships between 
the chosen factors/parameters with respect to the poten-
tial dam site locations.

Study area
Farta is one of the Woreda (District) in the Amhara 
region, Ethiopia. It is bordered on the west by Fogera, 
on the south by Misrak Este, on the East by Lay Gay-
int, and on the north by Ebenat. Farta Woreda cov-
ers an areal extent of 1358.249 km2 with a perimeter of 
171.280  km. Perennial and seasonal channels drain the 
Farta Woreda. The elevation of the study area varies from 
1825 to 3830 m above mean sea level (Fig. 1). In the Farta 
district, agriculture contributes much to meeting the 
major objectives of farmers such as food supplies and 
cash needs. In Farta Woreda, crops are grown for food 
and cash, and live stocks are kept as security during food 
shortages to meet the cash needs. In terms of land use, an 
estimated 67% of the study area is cultivated with peren-
nial and annual crops.

In the case of geology, volcanic rocks of the Recent Era 
dominate the surface geology of the study area. Debre 
Tabor basalts and trachyte with an areal extent of 650.61 
km2 dominate the geology of the study area followed 
by middle basalt flows (283.36km2), Guna tuff (213.44 
km2), upper basalts, and trachyte (30.7km2), quaternary 
lacustrine sediment (24.83 km2), Guna trachyte (21.77 
km2), upper basalts and pyroclasts (17.63km2), trachyte 
plug (3.85km2), and the plateau basalts and pyroclasts 
(0.86km2). The main objective of this paper is to identify 
suitable sites for dam construction based on topography, 

Fig. 1  Location of Farta Woreda (Ethiopia) with elevation
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precipitation, geology, etc., based on remote sensing and 
GIS technology.

Data and methodology
Criteria such as slope and hydrological conditions are 
indispensable criteria related to dam site selection, safety 
and dam construction [17]. In this study, criteria consid-
ered in identifying potential sites for dams based on the 
availability of data, literature appraisal and professional 
verdict. The methodology involves the following five 
steps:

1.	 Generation of essential parameters.
2.	 Assigning the fuzzy membership values.
3.	 Fuzzy overlay in GIS domain.
4.	 OLS regression analysis.
5.	 Spatial autocorrelation analysis.

Precipitation, slope, stream order, soil texture, and land 
use were analyzed in the GIS domain. The fuzzy logic 
approach has been used to evaluate the interrelationship 
of topographic features defining the dam site’s prospec-
tus. Suitable fuzzy membership values were assigned to 
the thematic layer according to their influence on dam 
site potential. All these thematic maps were assigned 
fuzzy logic membership values ranging from 0 (unlikely 
or unsuitable for potential dam site) to 1 (most likely or 
suitable potential dam site). Using the ‘fuzzy overlay’ tool, 
all these fuzzified thematic layers were overlaid to get the 
appropriate potential zones of dam sites. Fuzzy gamma 
operators have been used for factor theme integration. 
The OLS regression analysis has been done to understand 
and estimate the relationship between the various param-
eters with respect to the dam sites locations (Fig. 2). The 
OLS regression modeling was followed by “Spatial auto-
correlation” analysis to check if the standardized residu-
als follow either a random or a Gaussian pattern.

Precipitation
Precipitation data (merged satellite gauge–precipi-
tation estimate) for the year 2020 (Jan–Dec) were 
downloaded from global precipitation measurements 
with the spatial and temporal resolution of 0.10 and 
monthly, respectively. The precipitation data (mm/
yr.) were projected using Empirical Bayesian Kriging 
(EBK) in the Adindan_UTM_Zone_37N coordinate 
system. The prediction errors of EBK semivariograms 
were checked for their validity. Empirical Bayesian 
Kriging (EBK) was chosen because it automatically 
adjusts parameters to receive accurate results through 
a process of sub-setting and simulations. EBK was also 
chosen because it accounts for the error introduced 
by estimating the underlying semivariogram, unlike 

other kriging methods. The prediction errors for mean 
standardized, root mean square standardized, and 
average standard for precipitation EBK are 0.01, 0.98, 
and 8.6, respectively; hence validating the EBK for 
precipitation.

Slope
A digital elevation model (DEM) was used for slope 
calculation. DEM was used for slope calculation. The 
data for slope calculation were acquired from the Shut-
tle Radar Topography Mission Digital Elevation Model 
(30 m × 30 m resolution) data for its better accuracy both 
in its horizontal and vertical resolution [18]. The slope 
was calculated in the “degrees” unit using the “slope” tool 
in the GIS domain.

Stream order
The drainage network (Stream order, SO) was also cal-
culated from DEM. The DEM was sink-filled; then the 
“Flow direction” tool was run over the filled DEM fol-
lowed by the flow accumulation. Accumulated flow 
accumulation is based on the concept that water in each 
cell will flow towards the steepest downward cell among 
its eight cells. A threshold value for flow accumula-
tion defining the streams is very important. A threshold 
works as a divider to distinguish between the streams and 
small flows which will generally disappear either due to 
evapotranspiration or infiltration. A series of threshold 
tests were run to compare the extracted streams with the 
water features on the world topographic map provided by 
ESRI on ArcGIS online. Finally, a threshold of 3000 (3k) 
cells was found to be the most appropriate for the Farta 
Woreda. All the cells with an accumulated flow greater 
than or equal to 3k were taken as streams. The extracted 
streams were numbered based on Strahler stream order-
ing (Strahler 1957).

Soil texture, land‑use, and geology
The soil map of Farta Woreda was modified from the 
FAO [19] soil map of Ethiopia. Land-use of Farta Woreda 
was prepared from Landsat 8 OLI/TIRS images (for the 
2020 year) downloaded from the United States Geologi-
cal Survey (http://​earth​explo​rer.​usgs.​gov) with a spatial 
resolution of 30  m. A supervised learning classification 
was done in the ArcGIS 10.3 platform. The geology of the 
Farta Woreda was prepared from the Ethiopian geologi-
cal survey of Ethiopia [20].

Time of concentration
Time of concentration (Tc) is the time taken by the over-
land flow to travel from the hydraulically distant point 
to the watershed outlet (where dam sites were selected). 

http://earthexplorer.usgs.gov
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Tc for all the seven watersheds (1–7) associated with the 
seven selected dam sites was calculated using the Kirpich 
equation [21]:

 where Tc is the time of concentration (min); L is the 
length of the channel from headwater to outlet (ft), and S 
is the slope of the longest hydraulic length (ft/ft).

Reservoirs’ volume
The volume of the selected dams has been computed in 
the GIS domain. According to the location of the dams 
in combination with the DEM (Digital Elevation Model), 
TIN (Triangulated Irregular Network), and 5 m and 2 m 
contour layers. The contour that marks the reservoir’s 
maximum level has been chosen and converted into a 
polygon to calculate the total volume of the reservoir.

Ordinary least squares regression
The relationship between the various factors viz., precipi-
tation, land-use, geology, etc. (independent variables) and 
potential site areas (dependent variable) has been carried 
out using ordinary least squares (OLS) regression in the 
GIS domain using the following equation:

 where “A” is the potential dam sites, dependent vari-
able; X1 is the precipitation; X2 is the slope; X3 is the 
flow accumulation; X4 is the soil texture; X5 is the land 
use; X6 is the geology; α0 is the intercept; α1…α6 are 
the respective coefficients and e is the error/residuals. 
OLS was chosen because it creates easily interpretable 
output feature class and optional tables with coefficient 
information.

Spatial autocorrelation
A spatial autocorrelation tool was employed to check if 
the residuals exhibit a Gaussian pattern. A spatial auto-
correlation tool (Global Moran’s I) was run to check if the 
residuals of OLS Regression are clustered or dispersed. 
Furthermore, the Incremental autocorrelation tool was 
also run at distance bands of 466.359842 with the begin-
ning distance of 9928 m to check if there is any possibility 
of clustering of residuals at any different distances.

Results
Precipitation in Farta Woreda varies from 1157.44 to 
1701.97 mm/yr. The general distribution trend is low in 
the north and northeast part; while the distribution trend 
is increasing towards the south of the study area. The 

Tc=0.007[L
0.77/S0.385],

A = a0+ a1× 1+ a2× 2+ a3× 3+ a4

× 4 + a5× 5+ a6× 6+ e,

highest precipitation of 1599.48—1701.97  mm/yr. was 
found to cover an extent of 147.61 km2 towards the south; 
While the lowest precipitation of 1157.44—1262.07 mm/
yr. was found to cover an extent of 276.62 km towards the 
north. The spatial distribution map of the precipitation is 
shown in Fig. 3a.

The slope of the study area ranges from 0 to 67.18 
degrees. The steep slopes of 38.41—67.18° were found to 
cover 14.63 km2 of the study area. Whereas, flat to gentle 
slopes of 0—5.12° were found to cover an areal extent of 
272.40 km2.The spatial distribution of slope gradient in 
the Farta Woreda is shown in Fig. 3b.

The total number of streams found in the study area is 
306. The number of streams of the first order is 168. The 
number of streams of 2nd, 3rd, and 4th order is 82, 41, 
and 15, respectively. The spatial distribution of stream 
order is shown in Fig. 3c.

In the case of soil texture, sandy loam was found to 
cover (257.0944 km2) the eastern part of the study area. 
Whereas, loam was found to cover (1101.4946 km2) the 
rest of the study area. The spatial distribution map of the 
soil texture is shown in Fig. 3d.

In the case of land use, annual cropland with an extent 
of 495 km2 was found to dominate the study area fol-
lowed by closed shrubland (299km2), closed grassland 
(179km2), open shrubland (159km2), woodland (63km2), 
dense forest (59km2), perennial cropland (49km2), 
sparse forest (34.35km2), settlement (12.54km2), wetland 
(0.38km2), water body (0.052km2), lava flow (0.02km2), 
and salt pan (0.005km2). The spatial distribution of land 
use in the study area is shown in Fig. 3e.

All these thematic layers were assigned the fuzzy mem-
bership values varying from 0 to 1. The fuzzified thematic 
layers are shown in Fig. 4a–e. These fuzzified layers were 
overlaid using the "Fuzzy overlay tool" in the GIS domain. 
The resulting map (Fig. 5a) shows the site selection areas 
for dam construction.

Initially, a total of 26 dam sites were proposed based on 
the precipitation, slope, stream order, soil, and land use of 
the study area (Fig. 5a). The proposed 26 dam sites with 
their flow accumulation, elevation, precipitation, slope, 
and stream order are shown in Table  1. Out of 26 pro-
posed sites, 19 sites were discarded depending on their 
proximity to other dams, proximity to settlements. Flow 
accumulation and geology were also considered for dam 
site selection. The intersection tool was used to select the 
appropriate dam sites. The selected dam sites along with 
the underlying geology are shown in Fig. 5b. The selected 
dam sites with their flow accumulation, elevation, pre-
cipitation, slope, and stream order are shown in Table 2.

The Tc of the watersheds associated with the 
selected dam sites varies from 15.64  min (WS2) to 
112.24 (WS7) (Fig.  6). The length of the channel 
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Fig. 3  a Precipitation (mm/yr.); b slope (degrees); c stream order; d soil texture, and e land-use of Farta Woreda
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Fig. 4  Fuzzy membership values of, a precipitation; b slope; c stream order; d soil texture, and e land-use of Farta Woreda
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from headwater to outlet (ft), the slope of the longest 
hydraulic length, and the Tc for all the seven water-
sheds associated with the selected dams were cal-
culated in the GIS domain (Table  2). The maximum 
storage capacity of the selected dams is also calculated 
in the GIS environment (Table 2).

Independent variables associated with Variance 
of Influence Factor (VIF) greater than 7.5 should 
be removed while processing OLS regression. It is 
because higher VIF values indicate redundancy. The 
selected variables viz., precipitation, slope, flow accu-
mulation, soil texture, and geology were found to have 
low VIF values along with the significant robust prob-
ability statistics (Table 3). The multiple R squares val-
ues and the adjusted R-square values were found to 
be 0.835894 and 0.872153, respectively. The Akaike’s 
Information Criterion (AICc) of the OLS was found to 
be 4630.433. This indicates that OLS has captured the 
heterogeneity of independent variables (Table  4). The 
spatial distribution of standardized residuals gener-
ated using the OLS tool is shown in Fig.  7. Using the 
spatial autocorrelation tool, the standardized residuals 
were found to exhibit a Gaussian distribution (Fig.  8) 
with the Global Moran’s I summary shown in Table 5. 
Even the incremental autocorrelation carried shows 
the Gaussian pattern of standardized residuals. The 

summary of incremental autocorrelation is shown in 
Table 6.

Discussion
Precipitation has a direct relationship with the runoff 
water amount. Precipitation has a positive influence on 
the function of a dam except for landslides and floods 
caused by strong precipitation. Areas under high pre-
cipitation (found in the south and southwest of the 
study area) were found to have high fuzzy member-
ship values (0.72–1). These areas are considered to be 
suitable for dam site construction. While areas with 
low precipitation (found in the north and northeast of 
the study area) were assigned a low fuzzy membership 
value (0–0.27) because these areas are less suitable for 
dam site construction. Flat to gentle slopes (0–5.12°) 
were considered to be the most suitable for dam site 
construction (due to stability of foundations) and hence 
were assigned the highest fuzzy membership values 
of 0.88–1; whereas, steep slopes (38.41–67.18°) were 
assigned the lowest fuzzy membership values of 0.14–
0.44. This is because the steep slopes will cause dam 
instability. Drainage network/stream order (SO) pro-
vides the necessary runoff water for the dam function. 
Different levels (orders) of the drainage network pro-
vide a different amount of runoff water to the dam. The 
highest order or level provides the maximum amount of 

Fig. 5  a Fuzzy membership values of suitable areas for proposed dam sites; b selected dam sites super positioned on geology
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runoff water to the dam, while the lower levels (orders) 
provide the minimum amount of runoff water. Hence, 
the highest stream order 4 was assigned the highest 
fuzzy membership values (0.71–0.91) and the lowest 
stream order 1 was assigned the lowest fuzzy mem-
bership values of 0.001. It is because the lowest stream 
order is less suitable for dam site construction due to 
less amount of runoff water. Different soil textures 
have different infiltration rates and hence influence 
the amount of runoff differently. Therefore, soil texture 
influences the dam function concerning the amount of 
runoff amount generated. Sandy loam is less suitable for 
dam site construction and hence was assigned the low-
est fuzzy membership values of 0.04–0.18, while areas 
are underlain by loam soil texture was given the high-
est fuzzy membership values (0.56–0.78). In the case of 
land use, wetlands, water body, and settlements were 
restricted from dam site construction using restric-
tion modeling in the GIS domain. Areas with perennial 
cropland and annual cropland were assigned the lowest 
fuzzy membership values (0.05–0.34) because we are 

selecting the dam sites for agriculture purposes with-
out disturbing such land uses. Areas covered with bare 
soil were assigned the highest fuzzy membership values 
of 0.53–0.75. These fuzzified layers were overlaid to get 
suitable areas for dam site selections. Areas with the 
highest membership values are the most suitable for 
the dam sites and areas with the lowest fuzzy member-
ship values are the least suitable for dam site selection.

The resistance of a geological layer influences the 
dam’s safety. Geology is one of the many factors influ-
encing dam construction. The most common cause 
of dam failure is the geology of the area underlying the 
dam construction. Geology with relatively high resist-
ance to pressure, infiltration, and erosion are competent 
rock foundations. The most satisfactory materials for the 
desirable dam foundations are igneous rocks (e.g., gran-
ite), metamorphic rocks (e.g., quartzite), and sedimen-
tary rocks (e.g., thick-bedded and flat-lying sandstones). 
In the Farta Woreda, the areas underlain by pyroclastics 
and lacustrine sediments give low resistance to the dam 
construction (hence less suitable for dam construction), 

Table 1  Proposed dam sites with their flow accumulations, precipitations, slope gradient, stream order, and their coordinates

Dam sites Flow accumulation Elevation 
(meters)

Precipitation 
(mm/yr.)

Slope (degree) Stream order X Coordinate Y Coordinate

1 824308 1946 1557.54 0.71643 4 37° 53′ 7.325" E 11° 45′ 15.472" N

2 787957 1956 1268.53 3.07868 4 38° 2′ 45.971" E 11° 57′ 38.931" N

3 575443 2197 1332.99 7.816 4 38° 4′ 51.596" E 11° 53′ 54.808" N

4 506873 2069 1575.54 1.13269 3 37° 58′ 41.849" E 11° 46′ 26.984" N

5 282083 1921 1422.69 0 3 37° 51′ 24.297" E 11° 47′ 51.838" N

6 256439 1886 1234.77 0.506606 3 38° 1′ 30.824" E 11° 59′ 51.979" N

7 237329 2043 1279.69 3.57768 3 38° 0′ 27.761" E 11° 57′ 54.700" N

8 235823 2013 1234.85 0.506606 3 38° 5′ 38.840" E 11° 58′ 12.577" N

9 227807 2227 1498.4 2.1484 3 38° 2′ 37.233" E 11° 45′ 32.532" N

10 221888 2461 1308.03 11.6633 3 38° 7′ 23.840" E 11° 52′ 57.264" N

11 197299 2012 1505.13 2.08792 3 37° 54′ 22.703" E 11° 47′ 38.881" N

12 165981 2205 1523.15 1.13269 2 38° 0′ 2.960" E 11° 47′ 45.380" N

13 153985 2095 1245.17 9.52373 3 38° 7′ 43.971" E 11° 56′ 47.765" N

14 152606 2519 1287.32 8.1909 3 38° 9′ 16.450" E 11° 51′ 25.935" N

15 145132 2095 1188.27 0.71643 3 38° 15′ 34.733" E 11° 52′ 17.070" N

16 116380 2756 1318.4 0 2 38° 8′ 46.144" E 11° 48′ 13.019" N

17 107349 2270 1619.13 1.5195 3 37° 59′ 24.827" E 11° 43′ 32.731" N

18 75682 2221 1342.53 4.0776 2 37° 59′ 42.822" E 11° 55′ 20.741" N

19 75604 2429 1443.92 0.506606 2 38° 2′ 6.076" E 11° 49′ 22.738" N

20 73856 2618 1452.32 2.08792 2 38° 6′ 12.302" E 11° 43′ 23.628" N

21 72473 2712 1265.64 1.60165 2 38° 11′ 5.238" E 11° 49′ 12.746" N

22 50883 3049 1327.09 5.27431 2 38° 10′ 43.337" E 11° 44′ 48.406" N

23 29857 2155 1699.24 6.46037 2 37° 56′ 23.269" E 11° 40′ 46.774" N

24 25764 2089 1353.26 6.72805 2 37° 55′ 33.757" E 11° 54′ 40.886" N

25 16715 2555 1339.74 3.07868 1 38° 6′ 39.723" E 11° 50′ 50.430" N

26 9389 2061 1217.94 0.506606 1 38° 5′ 36.470" E 11° 59′ 4.546" N
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while areas underlain by basalts gives high resistance 
to the dam construction (hence more suitable for dam 
construction).

Finally, it can be seen that out of the seven water-
sheds associated with the selected dam sites; the time 
of concentration is the least in the case of watershed 
2 associated with dam site 2 (15.64  min.), followed by 
watershed 6 (dam site 6, 16.11 min.; watershed 4 (dam site 
4,17.27 min); watershed 5 (dam site 5, 17.87 min.); water-
shed 1 (dam site 1,20.03  min.); watershed 3 (dam site, 
23.93  min.), and watershed 7 (dam site 7, 112.24  min.). 
Therefore, priority for the dam construction sites should 
follow the following order:

Dam site 2 > Dam site 6 > Dam site 4 > Dam site 5 > Dam 
site 1 > Dam site 7.

This is because the lower the Tc, the quicker overland 
flow will reach the dam site without losing much water 

Fig. 6  Time of concentrations of the seven watersheds (WS1–WS7) associated with the selected dam sites (1–7)

Table 3  OLS model statistics (coefficient, robust probability and 
variance inflation factor of independent variables)

1 Statistically significant at the 0.05 level
2 Large VIF (> 7.5) indicates independent variable redundancy

Variable Coefficient Robust probability VIF2

Intercept 1.673 0.0000121 –

Precipitation 0.4525741 0.0001711 1.03476

Slope −0.0020713 0.0000061 1.21112

Flow accumulation 0.2341236 0.0001761 1.09731

Soil texture 0.0003421 0.0002371 1.89732

Land-use 0.2483 0.0000171 1.71214

Geology 0.1511675 0.0002831 1.40911
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to evaporation and infiltration. These seven dams will 
help much for the irrigation of croplands in the associ-
ated watersheds. Furthermore, it’s quite obvious from the 
table that dam site 3 is having a maximum storage capac-
ity of 4.285*106 m3 followed by dam site 1 (4.499*106 m3), 
dam site 4 (3.485*106 m3), dam site 2 (2.218*106 m3), dam 
site 5 (2.037*106 m3), dam site 7 (1.589*106 m3), and dam 
site 6 (1.032*106 m3).

The OLS results show that all the independent vari-
ables showed a positive coefficient relationship with 
the potential dam site variable except for the slope. The 
maximum coefficient has been observed in precipitation 
(0.4525741) followed by land-use (0.2483), flow accumu-
lation (0.2341236), geology (0.1511675), and soil texture 
(0.0003421). While as, the slope has been observed to 

have a coefficient value of (−0.0020713). This is because 
low slopes represent the high dam site potential. It 
implies that the potential dam site favors the high pre-
cipitation over a low slope with hard rock terrain over-
laying on loamy soil on the barren land. The coefficients 
obtained by each independent variable provide explana-
tions for the OLS model. It can be seen that all the inde-
pendent variables have a significant robust probability 
at a 0.05 level. Lower VIF values (< 7.5) also indicate the 
absence of redundancy in the independent variables.

The appraisal of the model significance was done by 
employing Joint F-statistic and Joint Wald Statistics (OLS 
diagnostics). If Koenker (BP) statistic is statistically sig-
nificant, then Joint F-statistic cannot be trustworthy. In 
our study, Koenker (BP) statistic was found statistically 

Table 4  OLS regression diagnostics

1 Measures model performance/fit
2 Significant p-value indicates model significance
3 Significant p-value indicates robust significance
4 When this test is statistically significant (p < 0.01), the relationships modeled are inconsistent
5 Significant p-value (p < 0.01) indicates residuals deviate from a Gaussian distribution

Number of observations 1463 Akaike’s information criterion (AICc)1 4630.433

Multiple R- squared1 0.835894 Adjusted R-squared 0.872153

Joint F statistic2 743.1133 Prob(> F), (6,1456) degrees of freedom: 0

Joint Wald statistic3 2300.732 Prob(> Chi-squared), (6) degrees of freedom: 0

Koenker (BP) statistic4 17.31002 Prob(> Chi-squared), (6) degrees of freedom: 0.003172*

Jarque–Bera statistic5 0.312731 Prob(> Chi-squared), (2) degrees of freedom: 0.813711

Fig. 7  Spatial distribution of standardized residuals
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insignificant (p > 0.01), proving that the relationship 
modeled was consistent. Jarque–Bera statistic was also 
found to be statistically insignificant (p > 0.01) indicat-
ing the gaussian distribution of residuals. Any regres-
sion modeling comes up with certain errors or residuals. 
These standardized residuals must exhibit a Gaussian 
pattern, then the only model is unbiased. In our study 

first, we carried out Spatial Autocorrelation on stand-
ardized residuals which yielded their Gaussian pattern. 
Furthermore, to further crosscheck, we employed incre-
mental autocorrelation with a certain distance increment 
(466.359842); with a beginning distance of 9928.0  m; 
keeping the row standardization “true” to check if there 
might be a correlation at some distance, but the model 
was again found to be unbiased.

Conclusion
Several factors (viz., precipitation, slope, flow accumu-
lation, land use, and geology) were analyzed in the GIS 
domain. These factors were assigned with the appro-
priate fuzzy membership values and overlaid to get the 
map of potential dam sites (wherein areas with high 
fuzzy membership values are highly suitable for dam 
construction and vice-versa). Initially, a total of 26 dam 
sites were proposed. Dam sites with flow accumulation 

Fig. 8  The Gaussian pattern of standardized residuals (represented by the z-score)

Table 5  Global Moran’s I summary

1 z-score value of 0.011335 shows that standard residuals exhibit a Gaussian 
pattern

Moran’s index −0.048047

Expected index −0.040000

Variance 0.016769

z-score1 −0.062144

p-value 0.950448
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above 3k were selected to be the potential sites for 
dam construction. Of 26 dam sites, only 7 dam sites 
were selected depending on their proximity to nearby 
dams, settlements, flow accumulation, and geology. The 
factors chosen to decide the potential dam sites were 
subjected to OLS regression to understand the extent 
of the relationship of these factors with the potential 
dam sites. The coefficients obtained by these factors 
explain the model. A lower value of VIF confirms the 
absence of multicollinearity and redundancy among the 
factors chosen. Three kinds of tests were performed on 
residuals viz, Koenker’s (BP) statistic, spatial autocor-
relation, and incremental autocorrelation. All the tests 
revealed a Gaussian distribution of residuals, indicat-
ing that the model is not biased. The proposed sites are 
feasibly located which will yield multi-benefits such as 
flood reduction, water for agriculture, fish industry, and 
hydropower generation This study proves the impor-
tance of fuzzy logic coupled with OLS regression to be 
a powerful tool in deciphering the potential dam sites 
and can be used at a regional and continental scale.
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