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Abstract 

Comammox (CMX) Nitrospira bacteria (NB) can accomplish ammonia oxidation independently, and their niche dif-
ferentiation holds promise for their ecological and survival functions. In this work, the vertical niche differentiation of 
CMX NB was investigated in the soils of 6 water-level fluctuation (WLF) zones (both natural and artificial) in the Three 
Gorges Reservoir (TGR) region. The results demonstrated that the level of clade A amoA was obviously reduced with 
increasing soil depth in the natural WLF zones and one of the artificial WLF zones. However, in the other two artificial 
WLF zones, the abundance of this gene was not dramatically reduced with depth. The level of clade B amoA did not 
markedly decrease with increasing soil depth in most WLF zones and remained stable in the three WLF zones. Total 
nitrogen (TN) had the most significant effect on the abundance of CMX NB. Clade A.1, clade A.2.1, clade A.2.2, clade 
A.3, and clade B of CMX NB co-occurred simultaneously in all WLF zones. The number of operational taxonomic units 
(OTUs) of clade A in the two types of WLF zones first increased and then decreased with increasing depth, whereas 
the number of OTUs of clade B continuously increased with depth in the artificial WLF zone. Total carbon (TC) and pH, 
as environmental factors, affected the community structure of CMX NB. This study confirmed the vertical differentia-
tion of the abundance and diversity of CMX NB in the WLF zones of the TGR region, and the artificial restoration of the 
WLF zones affected the niche differentiation of CMX NB to a certain degree.

Keywords:  Three Gorges water-level fluctuation zone, Comammox Nitrospira, Ecological niche, Ammonia-oxidizing 
archaea, Ammonia-oxidizing bacteria

Introduction
Nitrification is a critical link in the nitrogen biogeo-
chemical cycle, and the nitrogen flux in nitrification in 
terrestrial ecosystems is 330 Tg [1]. Nitrification is a bio-
logical process that converts ammonia to nitrate through 
microorganism catalysis and plays a vital role in global 
ecosystems. Nitrification mainly consists of two pro-
cesses, namely, ammonia oxidation and nitrite oxidation 
[2]. Specifically, ammonia is first oxidized into nitrite by 
ammonia-oxidizing archaea (AOA) and ammonia-oxidiz-
ing bacteria (AOB) [3], and then nitrite is oxidized into 
nitrate by nitrite-oxidizing bacteria (NOB) [4]. Daims 
et  al. [5] and Van Kessel et  al. [6], respectively, discov-
ered a new microorganism for the direct oxidization of 
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ammonia to nitrate, which is called comammox (CMX) 
Nitrospira bacteria (NB). These bacteria are widely pre-
sent in artificial engineering systems, including sewage 
treatment systems [7] and nitrification reactors [8], and 
they are also found in natural ecosystems such as salt 
marshes [9], agricultural soils [10], riparian soils [11], 
lake sediments [12], and forest soils [13].

All known CMX NB belongs to Nitrospira sublineage 
II, which can be further divided into clade A and clade B 
[5]. In 2018, Xia et al. firstly proposed dividing clade A of 
CMX into clade A.1 and clade A.2 [7]. In 2021, clade A.2 
was divided into clade A.2.1 and clade A.2.2 [14]. A new 
clade, A.3, was discovered in 2019 [15]. There are certain 
differences in the physiological properties of clade A and 
clade B [16]. The genes coding for formate dehydroge-
nase are present in CMX clade B but not in clade A [17, 
18], which makes the distribution of the two clades in the 
oxic–anoxic transition zones different. These differences 
result in spatial and temporal differentiation [9, 19] to 
adapt to different environmental conditions.

Soil physicochemical properties change with increas-
ing soil depth, which often leads to the corresponding 
changes in some soil microbial community structures. 
Previous studies showed that total nitrogen, inorganic 
nitrogen, organic matter, TC, and dissolved oxygen gen-
erally decreased with increasing soil depth, while pH 
did not change significantly [20–22]. Various ammonia-
oxidizing microorganisms have different adaptabilities 
to ammonia and oxygen, which contribute to bacterial 
differentiation with increasing soil depth, and this dif-
ferentiation enables ammonia-oxidizing microorganisms 
to occupy a wider range of ecological niches. Previous 
research demonstrated that the average abundance of 
all AOA, AOB, and CMX was dramatically reduced with 
increasing soil depth in forests, grasslands, and farm-
lands [23]. However, in the typical purple paddy soil in 
Beibei district, Chongqing, China, the abundance of 
AOA and AOB was dramatically reduced along the soil 
depth direction, and the abundance of CMX clade A was 
raised significantly with increasing soil profile depth, but 
the abundance of clade B exhibited no obvious change 
trend with increasing soil depth. The abundance of the 
AOA gene was shown to decrease with depth, while that 
of the AOB gene decreased in semi-arid soils in southern 
Australia [24]. In the sediments of a high-altitude fresh-
water wetland in Yunnan Province, China, AOA diver-
sity decreased with increasing sediment depth, whereas 
AOB diversity was not significantly correlated with sedi-
ment depth [25]. The CMX diversity in bottom sediments 
(5–10 cm) was higher than that on the surface (0–1 cm) 
and in middle sediments (1–5  cm) from the tidal flats 
of the Yangtze Estuary in China [26]. These phenomena 
indicate that ammonia-oxidizing microorganisms have 

the ability to vertically differentiate in different habitats 
to adapt to diverse natural environments.

The Three Gorges Dam is the largest water conserv-
ancy project with the largest comprehensive benefit in 
the world [27]. After the completion of the Three Gorges 
Dam, the water level in the reservoir region is 175 m in 
winter and 145  m in summer with a periodic flooding-
exposure water-level fluctuation (WLF) area of 348  km2 
on both sides of the reservoir region. After the Three 
Gorges began impounding water in 2003, the original 
vegetation in the WLF zones could not survive. Some 
zones where new vegetation can be restored naturally are 
often referred to as natural WLF zones [28]. Other zones 
where vegetation can only be restored by artificial plant-
ing are artificial WLF zones. Numerous studies showed 
that periodic flooding exposure can change the material 
transformation process in the soil in the WLF zone and 
increase the content of organic matter in the soil [29].
The oxygen content in the soil, especially in the top-
soil, changes dramatically during the flooding-exposure 
period, thus affecting the growth of CMX NB, making 
them more prone to vertical differentiation.

In this study, the natural and artificial WLF zones of 
the Three Gorges Reservoir (TGR) region were chosen to 
assess the diversity of ammonia-oxidizing microorgan-
isms and the abundance of AOA, AOB, and CMX NB 
in the soil. The aim of this research was to (a) reveal the 
vertical differentiation of CMX NB with soil depth in the 
WLF zones; (b) analyse the main environmental variables 
driving such differentiation; and (c) explore the adapta-
tion strategies of different clades of CMX NB to depth 
changes.

Materials and methods
Study sites and sample collection
In this study, Fuling, Wanzhou, and Zigui were selected 
as sampling areas representing the upper, middle, and 
lower reaches of the TGR region, with both natural and 
artificial WLF zones included. A total of 6 sampling zones 
were as follows: Fuling natural WLF zone (FL-N), Fuling 
artificial WLF zone (FL-A), Wanzhou natural WLF zone 
(WZ-N), Wanzhou artificial WLF zone (WZ-A), Zigui 
natural WLF zone (ZG-N), and Zigui artificial WLF zone 
(ZG-A) (Additional file 1: Fig. S1). The vegetation in the 
natural WLF zone mainly includes naturally grown ber-
mudagrass (Cynodon dactylon (L.) Pers.), Polygonum 
(Polygonum  L.), and Arthraxon hispidus (Arthraxon 
hispidus  (Trin.) Makino). The vegetation in the artifi-
cial WLF zone mainly consists of bermudagrass (Cyno-
don dactylon (L.) Pers.), artificially planted willow (Salix 
babylonica L.), and Zhongshan fir (Taxodium “Zhong-
shansha”). The sampling time was August 2021. Soil pro-
file samples were collected at four altitudes of 150, 160, 
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170, and 175  m, and the sampling depths at each alti-
tude sampling site were 0–5, 5–10, 10–20, 20–30, and 
30–40  cm. The collected specimens were kept in an ice 
box and transported back to the laboratory as soon as 
possible. Some of the soil specimens were stored at 4 ℃ 
in the laboratory for the subsequent determination of 
physicochemical properties. Other samples were frozen 
at – 80 ℃ for DNA isolation and molecular biology tests.

Physicochemical analysis
Then, 25 mL of KCL solution (1 mol  L−1) was added to 
5 g of soil at a KCL solution/soil ratio of 5:1, and the pH 
value was measured with a digital acidity metre (MET-
TLER TOLEDO, Switzerland) after leaching for 30 min. 
The air-dried, ground, and sieved soil specimens were 
isolated with 1  mol  L−1 KCl. The ammonia (NH4

+–N), 
nitrate (NO3

−–N), and nitrite (NO2
−–N) concentrations 

in the extract were detected. After the freeze-dried sam-
ples passed through a 200-mesh sieve, the total nitrogen 
(TN) and total carbon (TC) in the soil were determined 
using an elemental analyser (Elementar Vario ELIII 
analyser, Germany). After drying to constant weight at 
105 ℃, the moisture content (MC) was measured.

DNA extraction and quantitative real‑time PCR
The total bacterial genomic DNA of soil specimens was 
isolated with a Fast DNA Spin Kit for Soil (MPbio, USA). 
The purity and yield of the DNA extracts were detected 
using a NanoPhotometer-N60 spectrophotometer 
(IMPLEN, Germany).

AOA amoA, AOB amoA, CMX clade A amoA, and 
CMX clade B amoA genes were determined by qRT-
PCR assay using QuantStudioTM 6 Flex quantitative 
PCR instrument (Thermo-Fisher-Scientific, Singapore). 
The primer pairs used for PCR were Arch-amoAF/Arch-
amoAR [30], amoA-1Fmod/GenAOBR [31], CA377f/
C576r [32], and CB377f/C576r [32]. PCR was performed 
on a 10  μL reaction system containing T5 Fast qPCR 
Mix (5.0 μL), 10 μM of each primer (0.4 μL), ROX Refer-
ence Dye II (0.2 μL), template DNA (1.0 μL), and ddH2O 
(3.0  μL). The primers and amplification conditions are 
presented in Additional file 1: Table S1.

Amplicon sequencing and phylogenetic analysis
The high-throughput sequencing primer of CMX NB was 
comamoAF/R [33]. The Illumina NovaSeq PE250 (Shang-
hai Personal Biotechnology) sequencing platform was 
used for sequencing. Vsearch (v2.13.4_linux_x86_64) was 
used to process raw data [34]. The specific processing 
procedures were as follows. First, the primer fragment of 
the sequence was excised using cutadapt (v2.3), and the 
sequence of the unmatched primer was discarded. Then, 
sequence splicing, quality control, and deduplication 

were conducted using Vsearch. Next, high-quality 
sequences with 97% nucleic acid similarity were clustered 
into operational taxonomic units (OTUs) with chimaeras 
removed, and the singleton OTUs and their correspond-
ing sequences (in the OTU table) were removed. Last, 
based on the seed protein sequences of the CMX amoA 
gene, insertion and deletion errors in the OTU sequences 
were corrected using RDP FrameBot (v1.2) [35]. The 
obtained gene sequences were submitted to the NCBI 
(https://​www.​ncbi.​nlm.​nih.​gov/) database with the acces-
sion number ON677371-ON677405.

The top 35 OTUs with the largest number of OTUs 
were selected to analyse the representative sequences of 
each OTU using the BLAST tool (http://​www.​ncbi.​nlm.​
nih.​gov/​BLAST), and the closest similar sequences were 
selected from GenBank. Based on the selected sequences, 
phylogenetic trees were constructed using MEGA 7.0, 
and their reliability was assessed through 1000 bootstrap 
replicates.

Statistical analysis
One-way ANOVA was conducted using SPSS 25.0, and 
multiple comparisons were performed by the Duncan 
method to examine the differences in soil physicochemi-
cal indices and gene abundance. Redundancy analysis 
(RDA) was performed using CANOCO v5.0 to assess the 
association between gene abundance and environmen-
tal variables. Phylogenetic trees were constructed using 
MEGA7.0, and heatmaps of OTU numbers were plot-
ted using “pheatmap” in R. The Mantel test was used to 
evaluate the correlation between CMX NB and environ-
mental parameters. Spearman correlation analysis and 
plotting were performed using the packages “Hmisc” and 
“Corrplot” in R (version 3.6.1) to assess the correlation 
between diversity, abundance, and physicochemical fac-
tor parameters.

Results
Soil properties of the WLF zone in the TGR region
In the natural WLF zone of the TGR region, the differ-
ence in NO3

− content among various soil depths was 
significant (P < 0.05), and the content of the surface layer 
(0–10 cm) was significantly higher than that of the bot-
tom layer (30–40 cm), at 17.85–4.79 mg/kg (Table 1). No 
significant differences were found for other indicators 
(P > 0.05). In the artificial WLF zone, the difference in 
NO3

− content among different soil depths was significant 
(P < 0.05), and the NO3

− content at 0–5 cm was remark-
ably higher than that at 30–40  cm, which was 18.59–
8.38 mg/kg. The differences in other indicators were not 
significant (P > 0.05). The pH of the natural WLF zone 
was significantly lower than that in the artificial WLF 
zone (P < 0.05).

https://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST
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Abundance of CMX NB, AOA, and AOB in the WLF zone 
of the TGR region
In the natural WLF zone, the level of clade A amoA 
markedly decreased with soil depth (Fig.  1), and its 
abundance in the 0–5  cm soil surface layer was 1–3 
orders of magnitude higher than that at 30–40  cm. 
In the artificial WLF zone, the level of clade A amoA 
significantly decreased in Zigui with increasing soil 
depth, but in Fuling and Wanzhou, the abundance of 
this gene exhibited no obvious downwards trend. The 
level of clade B amoA in the other five fluctuation zones 
except the Fuling natural WLF zone did not decrease 

significantly with increasing soil depth, and the abun-
dance remained stable in the 3 WLF zones. In addition, 
in the two artificial WLF zones of Fuling and Zigui, the 
abundance value was highest at 10–20 cm.

Overall, the level of AOA amoA decreased with 
increasing soil depth in the natural WLF zones. In the 
artificial WLF zone, the level of AOA amoA was dra-
matically reduced with soil depth at the three sites. In 
all the WLF zones except the Wanzhou natural WLF 
zone, the AOB abundance showed a downwards trend 
with increasing soil depth (Fig. 1).

Table 1  Soil properties at various profile depths in the WLF zone of the TGR region

Different lowercase letters indicate a significant difference (P < 0.05) using ANOVA and Duncan’s test

Depth (cm) pH TN (g/kg) TC (g/kg) NH4
+ (mg/

kg)
NO3

− (mg/kg) NO2
− (mg/

kg)
MC (%) C/N

Natural WLF 
zone

0–5 6.79 ± 0.32a 0.80 ± 0.09a 13.07 ± 5.11a 1.76 ± 0.33a 17.85 ± 13.42a 0.05 ± 0.01a 17.00 ± 2.34a 16.85 ± 8.03a

5–10 6.65 ± 0.43a 1.03 ± 0.34a 12.22 ± 5.24a 1.89 ± 0.10a 17.53 ± 2.12a 0.05 ± 0.02a 16.87 ± 2.07a 13.38 ± 7.77a

10–20 6.60 ± 0.50a 0.95 ± 0.53a 10.57 ± 3.20a 1.95 ± 0.06a 8.78 ± 2.56ab 0.07 ± 0.02a 17.57 ± 0.74a 14.32 ± 9.02a

20–30 6.47 ± 0.51a 0.58 ± 0.14a 8.67 ± 3.53a 1.77 ± 0.22a 4.45 ± 1.19b 0.05 ± 0.03a 15.97 ± 1.24a 16.14 ± 9.04a

30–40 6.31 ± 0.80a 0.50 ± 0.09a 8.13 ± 4.26a 1.56 ± 0.16a 4.79 ± 1.25b 0.05 ± 0.02a 15.02 ± 0.46a 17.88 ± 11.99a

Artificial WLF 
zone

0–5 7.14 ± 0.54a 0.83 ± 0.48a 12.94 ± 1.00a 1.99 ± 0.39a 18.59 ± 12.58a 0.08 ± 0.05a 18.61 ± 3.41a 21.62 ± 16.14a

5–10 6.85 ± 0.62a 0.75 ± 0.34a 11.82 ± 2.55a 1.86 ± 0.08a 10.82 ± 2.97ab 0.07 ± 0.04a 16.97 ± 1.26a 20.68 ± 16.23a

10–20 6.84 ± 0.66a 0.68 ± 0.34a 10.19 ± 2.21a 1.89 ± 0.28a 6.12 ± 1.46ab 0.06 ± 0.03a 14.70 ± 2.30a 19.74 ± 14.31a

20–30 6.73 ± 0. 76a 0.61 ± 0.22a 8.65 ± 2.47a 1.79 ± 0.11a 5.43 ± 2.95ab 0.06 ± 0.03a 17.76 ± 3.90a 16.49 ± 9.37a

30–40 6.47 ± 0.85a 0.67 ± 0.19a 8.74 ± 3.05a 1.96 ± 0.19a 8.38 ± 6.45b 0.05 ± 0.04a 17.46 ± 4.17a 13.88 ± 6.06a

Fig. 1  Distribution of amoA gene abundance in ammonia-oxidizing microorganisms at different soil depths: a Fuling natural WLF zone; b Wanzhou 
natural WLF zone; c Zigui natural WLF zone; d Fuling artificial WLF zone; e Wanzhou artificial WLF zone; and f Zigui artificial WLF zone
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In the natural WLF zone, the average abundance 
of the amoA gene of CMX clade A, CMX clade B, 
AOA, and AOB was 1.51 × 108 copies/g dry sedi-
ment, 3.82 × 108 copies/g dry sediment, 1.46 × 109 
copies/g dry sediment, and 5.00 × 107 copies/g dry 
sediment, respectively. In the artificial WLF zone, the 
average abundance of these four genes was 1.05 × 108 
copies/g dry sediment, 4.00 × 108 copies/g dry sedi-
ment, 9.61 × 109 copies/g dry sediment, and 1.45 × 108 
copies/g dry sediment, respectively. There was a signifi-
cant difference in the levels of the AOA gene between 
the natural WLF zone and the artificial WLF zone 
(P < 0.05), while the amoA gene abundance of the other 
three ammonia-oxidizing microorganisms exhibited no 
difference (P > 0.05).

The average abundance of the AOA amoA gene was 
1.11 × 109 copies/g dry sediment, which was higher than 
that in CMX clade B (3.91 × 108 copies/g dry sediment) 
and CMX clade A (1.14 × 108 copies/g dry sediment). The 
average level of the AOB amoA gene was relatively low 
(1.10 × 108 copies/g dry sediment).

Co‑existence characteristics of ammonia‑oxidizing 
microorganisms and their correlation with environmental 
factors
Redundancy analysis (RDA) was performed to reveal 
the correlations between environmental factors and the 
amoA gene abundances of 4 types of ammonia-oxidizing 
microorganisms (CMX clade A, CMX clade B, AOA, 
and AOB) in the WLF zones of the TGR region using 
CANOCO v5.0. The first two axes of RDA accounted 
for 48.44% of the cumulative variance explanation rate 
(Fig. 2). Clade A was positively correlated with AOA or 
AOB. The abundance of the amoA gene of comammox 
clade A was negatively correlated with pH, NO2

−, and the 
C/N ratio and positively correlated with TN, TC, NH4

+, 
NO3

−, and MC. The abundance of the amoA gene of 
CMX clade B was negatively correlated with pH, NO2

−, 
C/N, NH4

+, NO3
−, and MC but was positively correlated 

with TN.
In the artificial WLF zone, the amoA gene level of 

CMX clade A was positively correlated with that of CMX 
clade B (P < 0.01) (Fig. 3b). However, in the natural WLF 
zone, there was no correlation in the levels of the amoA 
gene between the two microorganisms (Fig. 3a). The level 
of the amoA gene in CMX clade A was positively corre-
lated with that of AOB in both natural and artificial WLF 
zones (P < 0.05) (Fig.  3). In the natural WLF zone, the 
amoA gene abundance of CMX clade A was negatively 
correlated with soil depth (P < 0.01). In the artificial WLF 
zone, the abundance of the AOB amoA gene was also 
negatively correlated with soil depth (P < 0.05).

Biodiversity of CMX NB
A total of 35,740 high-quality CMX NB amoA gene 
sequences were detected from the WLF zone of the 
TGR region and were clustered into 14,813 OTUs with 
97% nucleic acid similarity. The selected top 35 OTUs 
sequences with a relative abundance of OTUs greater 
than 0.5% and similar sequences from the NCBI data-
base were applied to build a phylogenetic tree via the 
neighbour-joining method (Fig. 4). The 35 selected OTUs 
accounted for 65.71% of the CMX amoA gene sequences. 
The phylogenetic tree contained two clades, of which 
clade A contained 17 OTUs and clade B contained 18 
OTUs. Clade A was further divided into clade A.1 (1 
OTU), clade A.2.1 (13 OTUs), clade A.2.2 (2 OTUs), and 
clade A.3 (1 OTU).

The distribution of 35 OTUs is shown in Fig. 5. In both 
the natural WLF zone and artificial WLF zone, at the five 
soil profile depths, clade B was the most dominant spe-
cies, followed by clade A.2.1.

As the soil depth increased, the number of OTUs in 
clade A in the two types of WLF zones increased first 
and then decreased, with the largest OTU number in 
the 20–30 cm soil layer (Fig. 6). The OTUs number of 
clade B had no obvious distribution regularity in the 
natural WLF zone but showed an increasing trend 
with depth in the artificial WLF zone. In the natural 
WLF zone, the number of OTUs of clade A.1 increased 
along the soil depth from 0 to 30 cm. In both types of 

Fig. 2  RDA plots of correlation between physicochemical factors 
and abundance of amoA gene of CMX clade A, CMX clade B, AOA, 
or AOB in WLF zones of the TGR region. Red solid arrows indicate 
physicochemical factors, and blue arrows indicate amoA gene 
abundance
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WLF zones, the OTU number of clade A.2.1 exhib-
ited a decreasing trend along the vertical direction. 
In the artificial WLF zone, the OTU number of clade 
A.2.2 increased along the soil depth from 0 to 30 cm, 
while in the natural WLF zone, it exhibited no obvious 
change. Clade A.3 had a tendency to gradually increase 
in OTU number with depth in the artificial WLF zone. 
The OTU number of clade B was significantly larger at 
30–40 cm.

The connections of CMX at different depths were 
explored by co-occurrence network plots (Fig.  7). 
Among all samples, clade B possessed the highest 
number of nodes (49.05%–53.61%), followed by clade 
A.2 (34.71–40.82%). However, the average degree 
of clade A.2 was greater than that of clade B. The 
membership relationships at different depths graphs 
mainly showed positive interaction connections 
(0–5 cm: 57.27%; 5–10 cm: 64.46%; 10–20 cm: 62.73%; 
20–30  cm: 58.71%; 30–40  cm: 72.26%). In the two 
types of zone samples, artificial WLF zones possessed 
more positive interaction connections than natural 
WLF zones (artificial: 65.02%; natural: 59.53%) (Addi-
tional file 1: Fig. S2).

Correlation between community structure of CMX NB 
and physicochemical factors
In the natural WLF zone, the number of OTUs of clade 
A.1 was remarkably correlated with NO3

− and the C/N 
ratio (P < 0.05) (Fig.  8a), but in the artificial WLF zone, 
the number of OTUs of clade A.1 was markedly corre-
lated with NO2

− and MC (P < 0.05) (Fig. 8b). In the nat-
ural and artificial WLF zones, the number of OTUs of 
clade A.2 was correlated with both pH and TC (P < 0.05) 
(Fig.  8), but in the artificial WLF zone, the number of 
OTUs of clade A.3 was correlated with pH, TN, and TC 
(P < 0.05). In the natural and artificial WLF zones, the 
number of OTUs of clade B was correlated with pH, TC, 
and C/N (P < 0.05) (Fig.  8). In the artificial WLF zone, 
the Chao1 index and Shannon index, which characterize 
community abundance and diversity, respectively, were 
positively correlated with TC (P < 0.01).

Discussion
Effect of vertical depth of soil on abundance of CMX NB
Our results demonstrated that the level of the CMX clade 
A amoA gene decreased with increasing soil depth in the 
WLF zone of the TGR region, and this gene abundance 

Fig. 3  Spearman’s correlation heatmap: a natural WLF zones and b artificial WLF zones. Correlation analysis of environmental parameters, 
ammonia-oxidizing microbial amoA gene abundance, and α-diversity index of the CMX community. Significant correlations (P < 0.05) are marked 
with circles. Different colour scales on the right side indicate different correlation coefficient values



Page 7 of 13Ding et al. Environmental Sciences Europe          (2022) 34:118 	

in the surface soil was remarkably higher than that in the 
deep soil. However, the abundance of the CMX clade B 
amoA gene did not decrease significantly. This indicated 

that the two CMX clades were differentiated with depth 
and that these two clades exhibited different adaptability 
to depth, with clade B having the higher adaptability.

Fig. 4  Phylogenetic analysis of the amoA gene of CMX NB. The letters and numbers after the bacterial names indicate the submitted sequence 
numbers. Different colours of the branch nodes in the phylogenetic tree indicate different evolution distances. Percentages in brackets following 
the OTUs indicate the percentage of each OTU in the total CMX amoA gene sequences
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The abundance of the amoA gene of CMX 
(3.58 × 108–4.00 × 1013 copies/g dry sediment) in this 
study was higher than that in plain wetland ecosystems 
and Yangtze River estuary regions [9, 14]. Soil in the WLF 
zone is flooded at high water levels, which gives it some 
similarity to wetland soil. However, different from other 

wetland soils, due to the influence of periodic inundation, 
the nutrient composition in the Three Gorges WLF zone 
showed a general downwards trend during the inunda-
tion period [36, 37]. Some studies showed that CMX are 
more adaptable to low-nutrient environments [2, 38]. The 
soil oxygen content will increase with the decrease in soil 

Fig. 5  Distribution of the main OTUs: a natural WLF zones and b artificial WLF zones

Fig. 6  OTU numbers of CMX NB at different soil profile depths: a natural WLF zones and b artificial WLF zones
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moisture during the outcropping period, which is also 
conducive to the growth of CMX. These two factors may 
be the main reason for the higher abundance of CMX in 
the Three Gorges WLF zone than in the wetland.

The soil oxygen content in the WLF zone, especially 
in the topsoil, changed drastically during the flooding-
exposure period, thus inevitably affecting the growth 
of CMX NB. Previous studies showed that clade A had 

Fig. 7  Co-occurrence network analysis of all CMX NB clades at different depths

Fig. 8  Correlation analysis of community structure and physicochemical properties: a natural WLF zones and b artificial WLF zones. Colour 
gradients indicate Pearson’s correlation coefficients. Edge width indicates correlation coefficient r value by Mantel test, and edge colours indicate 
statistical significance P value based on 9999 permutations
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higher metabolic diversity than clade B [39], and clade 
A not only used ammonia as a metabolic substrate but 
also utilized urea, cyanate, and hydrogen as substrates 
for nitrification [6, 18, 40]. However, the evolution rate of 
ammonia oxidation-related proteins was faster in clade 
B genomes than in clade A genomes [18]. It may be this 
advantage that enables clade B to respond more quickly 
to environmental conditions with frequently changing 
water levels, which might explain why clade B maintained 
relatively stable abundances in 3 WLF zones, even reach-
ing the highest abundance at a depth of 10–20 cm in both 
natural and artificial WLF zones.

Soil vertical depth affects the community structure of CMX 
NB
With increasing depth, soil environmental conditions 
change, thus affecting microbial community structure 
[41]. Previous studies also reported depth-dependent 
changed in the community structure of typical ammonia-
oxidizing microorganisms in lake or wetland sediments 
[42]. AOA diversity was reduced with increasing sedi-
ment depth, while AOB diversity was not significantly 
related to sediment depth [25]. In subtropical estuarine 
wetlands, the relative abundance of CMX clade A.2.2 was 
reduced with depth, while clade A.3 exhibited the oppo-
site trend [43]. In Chongming eastern tidal flat sediment 
samples, the abundance of CMX clade A.1 in shallow 
surface sediments (1–5 cm) was higher than that in deep 
layer sediments (5–10 cm) in summer and winter, while 
that of clade A.2 exhibited the opposite trend [44].

Our results showed that the number of OTUs in 
clade A first increased and then decreased with increas-
ing depth. Clade A.2.1 showed a decreasing trend along 
the vertical depth, the number of OTUs in clade A.2.2 
increased along the soil depth direction from 0 to 30 cm 
in the artificial WLF zone, and clade A.3 in the artificial 
WLF zone exhibited an increasing trend with depth. 
However, the number of OTUs of clade B in the artificial 
WLF zone showed an increasing trend with depth, and 
clade B was dominant in the 30–40 cm soil layer. These 
results showed that in the Three Gorges WLF zone, clade 
A.2.1 preferred an environment with relatively high oxy-
gen content and richer nutrients, while clade A.2.2, clade 
A.3, and clade B were more suitable for the hypoxic and 
oligotrophic environments in the WLF zone.

The results also showed that clade B was predominant 
in the CMX community in the WLF zone of the TGR 
region, followed by clade A.2.1. Clade B was the domi-
nant CMX species in low-ammonia soils [10], which 
might mainly be because clade B adopted an Amt-type 
ammonia transporter, whereas clade A possessed an 
Rh-type ammonia transporter similar to betaproteo-
bacterial AOB. In environments with a large ammonia 

concentration fluctuation [29], clade B employing the 
Amt-type transporter is more competitive [38]. This 
might be an important reason why clade B was predomi-
nant in the WLF zone in this study.

Physicochemical factors affecting the community structure 
of CMX NB
TN is a pivotal factor affecting the level of the CMX 
amoA gene [43]. In this work, TN was positively corre-
lated with the level of the CMX clade A gene. The micro-
cosm experiment showed that under the condition of 
insufficient external ammonia supply, CMX NB also had 
continuous amoA gene transcription [7], indicating that 
CMX NB had a competitive advantage over other ammo-
nia-oxidizing microorganisms under low ammonia con-
ditions. This might be because the slow organic nitrogen 
mineralization process provided sufficient ammonia for 
the growth of CMX NB with a high ammonia affinity [45, 
46].

In the natural WLF zone of this study, the community 
structures of clade A.2 and clade B were significantly 
affected by pH and TC. In the artificial WLF zone, the 
community structures of clades A.1, A.2, A.3, and B were 
significantly affected by pH and TC. This suggested that 
pH and TC were important environmental drivers of 
niche differentiation for CMX, AOB, and AOA in soil 
habitats.

CMX NB had a greater competitive advantage over 
other ammonia-oxidizing microorganisms in acidic soils 
than in neutral and alkaline soils. This might be because 
CMX NB had a high affinity for ammonia nitrogen. 
Acidic soils are oligotrophic environments with very low 
concentrations of free ammonia, and pH strongly affects 
substrate availability for CMX NB through ammonia dis-
sociation equilibrium [47, 48]. Another reason might be 
that the CMX NB genome (such as Nitrospira inopinata) 
consists of a Kdp potassium uptake system encoding 
KdpABC and kdpDE gene clusters. This system is similar 
to the pH balance system in AOA, and it is crucial for low 
pH adaptation. This system is involved in the uptake of 
potassium and generation of a reverse membrane poten-
tial to maintain equilibrium under low pH conditions 
[49].

In the artificial WLF zone of the TGR, a significant 
positive correlation was found between the soil TC 
content and the Chao1 index or the Shannon index of 
CMX NB. The abundance of the amoA gene in both 
clade A and clade B was significantly positively cor-
related with soil TC content. These findings indicated 
that TC could promote the growth of CMX NB in the 
WLF zone of the TGR region. TC might affect ammonia 
oxidation by modulating the concentrations of organic 
carbon. A relatively high organic carbon concentration 
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was reported to enhance ammonia oxidation [50]. Sun 
et  al. also found that organic carbon content affected 
the community structure of CMX NB [51]. In addition, 
high total carbon content was beneficial to improving 
the soil C/N ratio. CMX NB in Chinese agricultural 
soils was found to prefer soils with a high C/N ratio 
[52]. However, the abundance of CMX NB in US forest 
soils was negatively correlated with the soil C/N ratio 
[53]. These different results showed that the growth of 
CMX NB was not only related to the content of TC and 
TN but also to their existing forms in the soil.

Conclusion
Our results showed that CMX NB widely existed in the 
WLF zones of the TGR region of the Yangtze River in 
China, and these WLF zones were relatively rich in the 
CMX community and that clade A.1, clade A.2.1, clade 
A.2.2, clade A.3, and clade B coexisted. The amoA gene 
abundances of AOA, AOB, and CMX clade A showed a 
significant decreasing trend with soil depth. However, 
the abundance of clade B did not decrease significantly, 
indicating that clade B was more adaptable to depth 
changes. The number of OTUs of clade A.1, A2.2, A3, 
and B in the soil all showed an increasing trend with 
soil depth, while clade A2.1 exhibited a decreasing 
trend with vertical depth. This study confirmed the 
niche differentiation phenomenon of CMX NB in the 
WLF zones of the TGR region.
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