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Abstract 

Cytokinin oxidase/dehydrogenase (CKX) is a key regulatory enzyme for the irreversible degradation of the plant 
hormone cytokinin (CK), which is important in growth and development and response to abiotic stresses in cotton. 
In this study, 27, 28, 14 and 14 CKXs were screened by FAD structural domain and cytokinin binding structural domain 
in Gossypium hirsutum, Gossypium barbadense, Gossypium arboreum and Gossypium raimondii, respectively. Their 
phylogenetic relationships and expression patterns were analyzed, and most GhCKXs were found to be tissue-specific 
and responsive to various abiotic stresses such as cold, heat, salt and PEG. GhCKX6b-Dt was selected for gene silencing 
in evolutionary branch II for salt stress, because its expression increased after salt stress in cotton plants. An increase 
in PRO and MDA content and a decrease in SOD activity due to this gene were found after inducing salt stress, con-
tributing to oxidative damage and decreased salt tolerance. In this study, CKXs were analyzed to reveal the possible 
role of GhCKXs against abiotic stresses in cotton, which provides a basis for further understanding of the biological 
functions of CK in plants such as growth and development and stress resistance.

Keywords  Cytokinin oxidase/dehydrogenase, CKX, Salinity stress, GhCKX6b-Dt, Cytokinin, Antioxidant

Introduction
As the plants are sessile, they must respond quickly to 
damage from complex environments, including biotic 
(e.g., microbial and insect pathogens) and abiotic (e.g., 
drought, salt, and heavy metals) stresses. Among them, 
salt stress is a primary global environmental factor that 
limits plant growth and crop productivity [1], more than 
6% of the world’s land area is saline (about 800 million 
hectares of land worldwide) [2]. Poor irrigation practices, 
inappropriate application of fertilizers and industrial 
pollution have increased salinity in the soil [3]. When 
the concentration of soluble salts in the soil exceeds a 
threshold value, saline soils were formed [4, 5]. Salt stress 
may adversely affect cells by causing osmotic stress [6, 
7], ionic stress [8] and oxidative stress [9]. Na has been 
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shown to be an essential nutrient required by animals 
[10], and excess Sodium is detrimental to animals and 
plants [11]. The accumulation of Na+ in plants can 
result in disturbed ionic dynamic balance, imbalance of 
potassium ion (K+)/Na+ ratio and Na+ toxicity, which 
could lead to secondary stresses including oxidative 
stress. Oxidative stress will lead to cell membrane 
damage, ion leakage or direct damage to proteins and 
other macromolecules, which in turn will result in 
membrane dysfunction and even cell death. Both ion 
stress and oxidative stress can expedite leaf senescence 
by degrading chlorophyll, inhibiting photosynthesis and 
reducing yield [12, 13].

Natural cytokinin (CK) is a plant hormone that is derived 
from adenine and possesses either an isoprenoid or aromatic 
side chain at the N6 position of the adenine ring. It can be 
obtained through isolation or synthesis from maize or other 
plant sources [14]. Therefore, CK can be categorized into iso-
prenoid and aromatic CK, with the former being more prev-
alent in plants and more abundant than the latter [15]. CK is 
essential for regulating plant growth, development and adap-
tation to environmental stresses. It is primarily synthesized 
in plant roots and functions as a group of compounds that 
stimulate cytoplasmic division. In growing seedlings, CK 
regulates lateral root organogenesis, root meristem size, and 
hypocotyl elongation [16]. Moreover, CK exerts a protective 
effect against plant senescence by inhibiting the breakdown 
of nucleic acids, proteins and other substances in the plant, 
while concurrently redistributing essential amino acids, hor-
mones, inorganic salts and other compounds to other parts 
of the plant [17]. Since CK is a negative regulator of plant 
root growth and branching, CK can make plants exhibit 
long-term drought resistance by promoting the degrada-
tion of CK in the root system to expand the root system and 
increase the root to crown ratio and thus the water absorp-
tion area of the root system [12]. An experimental result 
showed that heat stress reduced the content of CK, and the 
heat resistance of plants was enhanced by exogenous treat-
ment with CK [18].

Cytokinin oxidase/dehydrogenase (CKX) catalyzes 
the degradation of CK in plant tissues and is a critical 
negative regulator of endogenous CK content in the plant 
kingdom [19–21]. CKX was detected for the first time 
in crude extracts of tobacco tissues [22]. It catalyzes the 
cleavage of unsaturated N6 side chains of CK, such as 
zeatin, isopentenyl adenine or their ribosyl derivatives, 
resulting in the release of free adenine or free adenine 
nucleoside, leading to complete inactivation of CK [18]. 
Several studies have shown that CKX is involved in 
various physiological processes in a variety of plants, 
including CK catabolism metabolism, root structure and 
resistance to abiotic stresses. AtCKX overexpression in 
Arabidopsis induces CK deficiency which enhances salt 

tolerance and drought tolerance [23]. Moderate increase 
in CK levels by down-regulating GhCKXs expression 
resulted in higher fiber and seed yield in cotton [24, 25]. 
A CKX gene was isolated from Medicago sativa, MsCKX, 
and its expression was found to increase under salt stress 
and abscisic acid (ABA) treatment. Overexpression of 
the MsCKX gene increased the activity of CKX, which 
resulted in root expansion in transgenic Arabidopsis. 
Meanwhile, overexpression of MsCKX enhanced salt 
tolerance in transgenic plants by maintaining a high K+/
Na+ ratio, enhancing the ROS scavenging activity of 
antioxidant enzymes and improving the expression levels 
of stress-related genes (ion transport proteins and H+ 
pumps) [26]. In rice, OsCKX11 had a role in delaying leaf 
senescence, increasing seed number and coordinating 
the regulation of the source pool, thus suggesting that 
CK plays an overwhelming role in leaf senescence 
and determining seed number [27], and disruption of 
OsCKX3 enhances CK content in the articular layer and 
also negatively regulates leaf angle [28].

Cotton (Gossypium spp.) is an extremely valuable 
fiber crop and oilseed crop, accounting for 35% of global 
fiber usage. Additionally, it is also a moderately salt 
tolerant crop [29]. While the impact of CKX genes on 
CK homeostasis and regulating growth and development 
in plants such as Arabidopsis thaliana and rice has been 
extensively studied, further research is necessary to 
elucidate the biological function of the CKX family in 
cotton. In this study, a total of 83 CKXs in four major 
cotton species were identified, and a systematic analysis 
of the CKXs was performed, including phylogenetic 
relationships, chromosomal localization and protein 
interaction networks, and their expression patterns 
under abiotic stresses and different tissues in cotton were 
also investigated. The function of GhCKX6b-Dt in salt 
tolerance was investigated using the virus induced gene 
silencing (VIGS) technique. The results of this study will 
contribute to future research by providing insight into 
the function into the phytohormone CK in cotton.

Materials and methods
Identification of CKX family members
CDS sequences and protein sequences of Gossypium hir-
sutum (G. hirsutum) (NAU), Gossypium barbadense (G. 
barbadense) (ZJU), Gossypium arboreum (G. arboreum) 
(CRI), and Gossypium raimondii (G. raimondii) (JGI) 
were obtained from the cotton database Gossypium 
Resource and Network Database (http://​grand.​crica​
as.​com.​cn) and Cotton Functional Genomic Database 
(CottonFGD) (https://​cotto​nfgd.​net/) in this study. CKX 
protein conserved structural domains were identified by 
Pfam database (https://​pfam.​xfam.​org/): FAD binding 
domain (PF01565) and Cytokin-bind domain (PF09265) 

http://grand.cricaas.com.cn
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[30]. These two Hidden Markov Models (HMM) were uti-
lized as query files for protein screening in the HMMER 
(version 3.3.1) [31] to obtain candidate genes. The genes 
common to both screens were set as the final CKX mem-
bers. CKXs were renamed according to their homology 
with Arabidopsis thaliana [25].

Phylogenetic analysis and sequences alignments
CKX protein sequences were downloaded from Cotton-
FGD (https://​cotto​nfgd.​net/) for G. hirsutum (NAU), G. bar-
badense (ZJU), G. arboreum (CRI), and G. raimondii (JGI) 
and from the online database Phytozome v13 (https://​phyto​
zome-​next.​jgi.​doe.​gov/) for Arabidopsis thaliana. The soft-
ware MEGA5 was used for sequence alignment, the results 
were analyzed to construct intraspecific (Neighbor Joining 
(NJ) method) [25].

Chromosomal locations of CKXs from four Gossypium species
The genome annotation files of the four Gossypium species 
were downloaded from the CottonFGD (https://​cotto​nfgd.​
net/​about/​downl​oad/​annot​ation). The software TBtools was 
employed to visualize the chromosome locations of CKXs of 
four Gossypium species [32].

Analysis of GhCKXs promoter regions and different 
expressions
The upstream sequence (2000  bp) preceding the 
start codon (ATG) of GhCKXs was obtained from 
the CottonFGD database (https://​cotto​nfgd.​net) and 
submitted to PlantCARE (http://​bioin​forma​tics.​psb.​
ugent.​be/​webto​ols/​plant​care/​html) for the identification 
of cis-acting elements in the promoter of the GhCKXs. 
The expression levels of GhCKXs under different abiotic 
stresses (cold, heat, salt, and PEG) and different tissues 
(root, stem, leaf, torus, petal, stamen, pistil, and calycle) 
were shown as FPKM values from RNA-Seq data 
(PRJNA490626) [33]. Images containing evolutionary 
trees, cis-acting elements, and heat maps of expression 
levels were drawn for visual observation using TBtools 
software.

Gene ontology (GO) annotation analysis of GhCKXs
To explore the function of GhCKXs, GO annotation 
analysis was performed by CottonFGD (https://​cotto​
nfgd.​net).

Materials, plant growth and treatments
The G. hirsutum cultivar Zhong 9807 was used as 
experimental material and seeds were sown on a 
1:1.5 substrate of sand to vermiculite and grown in an 

incubator at 25 °C/23 °C with 16 h of light/8 h of darkness. 
The cotton seedlings were treated with 100 mmol/L NaCl 
solution, and samples were taken after 0, 6, 12 and 24 h, 
snap-frozen in liquid nitrogen and stored at − 80 °C.

RNA extraction and quantitative real‑time PCR (qRT‑PCR)
Tissue (leaf ) grinding and extraction of total RNA 
according to EasySpin plus plant RNA rapid isolation 
Kit (aidlab Co., Ltd, Beijing, China). RNA was reverse 
transcribed to cDNA using the HiScript Ill RT SuperMix 
for qPCR (+gDNA wiper) (Vazyme Biotech Co., LTD, 
Nanjing, China). qRT-PCR experiments were performed 
using an Applied Biosystems@7500 Fast instrument and a 
quantification kit (PerfectStart® Green qPCR SuperMix) 
(TransGene Biotech Co., LTD, Beijing, China), with 
the internal reference gene (GhUBQ7) as a control. 
2−ΔΔCT method to calculate the relative expression of 
GhCKXs [34]. Primers were designed using the website 
(https://​www.​gensc​ript.​com/) and the specificity of the 
primers was checked at the NCBI (National Center for 
Biotechnology Information) (https://​www.​ncbi.​nlm.​nih.​
gov/) website. Gene-specific primers for qRT-PCR are 
listed in Additional file 1: Table S1.

Virus induced gene silencing (VIGS) experiment
GhCKX6b-Dt was significantly up-regulated at 6 h, 12 h 
and 24 h after treatment with 100 mmol/L concentration 
of NaCl solution, so this gene was selected for silencing, 
and then the GhCKX family function was explored. The 
upland cotton cultivar 9807 was cultivated in nutrient 
soil and subsequently placed in an incubator with a 
light–dark cycle of 16/8  h, ambient humidity of 50%, 
and temperature of 25/20 °C (light/dark). Agrobacterium 
tumefaciens was injected into the cotton plant when the 
two cotyledons were unfurled and the treatment occurred 
during the two leaf one heart stage of cotton. A silencing 
fragment of around 300 bp was designed by SGN-VIGS 
(https://​vigs.​solge​nomics). The vector construction is 
outlined in Additional file  2: Materials and methods 
for a more comprehensive operating procedure for 
reference. The gene-specific primers for qRT-PCR are 
listed in Additional file  1: Table  S1. The fragment was 
ligated into the pYL156 vector and after transformation 
into Agrobacterium, and pYL156: GhCKX6b-Dt, pYL156: 
PDS and pYL192 was cultured to OD600 = 1.2–1.5. Each 
mixture was injected into the lower side of cotyledons 
of G. hirsutum material Zhong 9807. After injection, 
seedlings were placed in the dark for 24  h, followed by 
a 16 h light/8 h dark cycle at 25/20  °C (light/dark). The 
cotton seedlings were treated with 100  mmol/L NaCl 
solution for 24 h which occurred during the two leaf one 
heart stage of cotton. Subsequently, the leaves were taken 

https://cottonfgd.net/
https://phytozome-next.jgi.doe.gov/
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https://cottonfgd.net
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https://vigs.solgenomics


Page 4 of 16Liu et al. Environmental Sciences Europe           (2023) 35:82 

as samples, which were quick-frozen with liquid nitrogen 
and stored in a −80  ℃ refrigerator for subsequent 
experiments.

Determination of PRO, MDA content, SOD enzyme activity 
and DAB staining
0.1  g of fresh leaves were taken to determine the 
content or enzyme activity of each substance in the 
plants using Proline (PRO) Content Assay Kit (Nanjing 
Jiancheng Institute of Biological Engineering, A107-
1-1), Malondialdehyde (MDA) Assay Kit (Nanjing 
Jiancheng Institute of Biological Engineering, A003-
3-1) and Superoxide Dismutase (SOD) Activity Assay 
Kit (Beijing Solarbio Science & Technology Co., Ltd., 
BC0170), respectively. Three biological replicates were 
available for each sample. The DAB staining method 
called diaminobenzidine method was used to detect the 
active site of peroxidase in cells [35]. Three leaves each of 
pYL156 and pYL156: GhCKX6b-Dt were taken after NaCl 
stress and placed in DAB solution, darkened for 12 h, and 
observed after decolorization with 95% ethanol. The dark 
brown polymerization products represent the reaction of 
DAB with hydrogen peroxide.

Gene interaction network of the GhCKX6b‑Dt protein
GhCKX6b-Dt protein interaction network was analyzed 
by STRING database (https://​string-​db.​org/) [36]. The 
Arabidopsis thaliana homolog of GhCKX6b-Dt was used 

to predict the interactions of GhCKX6b-Dt with other 
genes in cotton.

Results
Identification of CKX proteins
To investigate the precise information and potential 
functions of cytokinin dehydrogenase (CKX) in cot-
ton, the putative CKXs in the cotton genome was 
subjected to systematic genome-wide characteriza-
tion. For this purpose, Hidden Markov model (HMM) 
profiles were generated based on the reported protein 
sequences of Brassica napus [37], Vitis vinifera [30], 
and Medicago truncatula CKX proteins [38], respec-
tively. Two Hidden Markov Model (HMM) profiles, 
FAD-binding domain (PF01565) and Cytokinin-binding 
domain (PF09265), were used for protein screening 
in the HMMER, and further analysis using the Pfam 
database identified 27, 28, 14, and 14 CKX members in 
G. hirsutum, G. barbadense, G. arboreum, and G. rai-
mondii, respectively. Then renamed the genes accord-
ing to their Arabidopsis homologs (Additional file  1: 
Table  S2) [25]. A phylogenetic tree of four Gossypium 
species and Arabidopsis was constructed based on 
the full-length amino acid sequences of 83 CKXs pro-
teins in cotton and 7 AtCKXs proteins using the NJ 
method (Fig. 1A). As shown in Fig. 1B, the CKX family 
in cotton was clearly divided into 5 subgroups (labeled 
as groups I, II, III, IV and V) based on the branch in 

Fig. 1  Phylogenetic analysis of CKX proteins. A Phylogenetic relationship of the 83 identified CKXs from four Gossypium species and 7 AtCKXs 
in Arabidopsis using MEGA 5.0 by the Neighbor-Joining (NJ) method, the tree showed 6 major phylogenetic subgroups, designated as I to VI. B 
Phylogenetic relationship of the 83 identified CKXs from four Gossypium species using MEGA 5.0 by the Neighbor-Joining (NJ) method, the tree 
showed 5 major phylogenetic subgroups, designated as I to V. The suffix “At” and “Dt” indicates the origin of genes from the cotton A subgenome 
or D subgenome, respectively

https://string-db.org/
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which Arabidopsis thaliana was located. The CKX pro-
teins of the four Gossypium species were spread across 
subgroups, containing proteins from both diploid and 
allotetraploid Gossypium species in each branch, and 
almost twice as many CKX proteins in tetraploid cotton 
as in diploid cotton.

Chromosomal locations of CKXs from four Gossypium 
species
To investigate the chromosomal distribution of CKXs, 
based on the Cotton Genome Database, the predicted 
CKXs were located to the physical locations of genes 
on the cotton chromosome. To study the chromosome 
distribution of CKX members, the predicted CKXs were 
mapped into the physical locations of genes on chro-
mosomes according to the Cotton Genome Database. 
As shown in Fig. 2, 81 of the 83 CKXs were unequally 
distributed on their respective specific chromosomes, 
but 2 CKXs, GhCKX5a-At and GhCKX3c-Dt, were 
not annotated and not located on any of the chromo-
somes. In terms of chromosome distribution, there 
were 1–3 genes on each chromosome. In G. hirsutum, 
there were 13 genes in subgenome A and 14 genes in 
subgenome D. Chromosomes A02, A03, A4, A11, A12, 
D02, D03, D07, D11, and D12 did not have GhCKXs. 
In G. barbadense, there were 14 genes each in subge-
nome A and subgenome D. Chromosomes A02, A03, 
A4, A11, A12, D02, D03, D11, and D12 did not contain 
GbCKXs. At different from G. hirsutum, GbCKX6b-At 
was located on the lower part of chromosome D05 in 
G. barbadense; GbCKX5a-At was located on chromo-
some GbA06 instead of the scaffold; and GbCKX3c-Dt 
appeared on chromosome GbD07 instead of the scaf-
fold. In G. arboreum, there were 14 genes irregularly 
arranged on their respective chromosomes, and chro-
mosomes Chr02, Chr03, Chr11 and Chr12 had no 
GaCKXs distribution. In G. raimondii, there were 14 
genes unevenly distributed on their respective chromo-
somes and no GrCKXs distribution on chromosomes 
Chr03, Chr05, Chr07 and Chr08. In the four Gossypium 
species, slight differences in the number and distribu-
tion of chromosomes were noted, so it was hypothe-
sized that this could be due to the duplication or loss of 
CKX members during evolution.

Analysis of GhCKXs promoter and expression pattern
An increasing body of evidence demonstrates that cis-
acting elements in gene promoters can impact gene 
expression and function [39]. To further analyze the 
transcriptional regulation and potential functions of 
GhCKXs, their evolutionary tree, promoter analysis 
and expression heat map were correlated, and poten-
tial stress-responsive cis-regulatory elements were 
identified using GhCKXs protein sequences, promoters 
in 2kb sequences upstream of the transcription start 
site and GhCKXs expression in the RNA-Seq database 
under different stresses (cold, heat, salt and PEG). 
As shown in Fig.  3, several light-responsive compo-
nents, hormone-responsive components, and compo-
nents related to abiotic stresses were identified, such 
as light responsiveness, auxin responsiveness, gibber-
ellin-responsiveness, salicylic acid responsiveness, 
MeJA-responsiveness, abscisic acid responsiveness, 
wound-responsiveness, defense and stress responsive-
ness, meristem expression, drought-inducibility and 
low-temperature responsiveness and so on. The most 
light responsive elements were detected, with each 
GhCKX member containing multiple light respon-
sive elements; secondly 18 GhCKXs contained absci-
sic acid responsive elements; 17 GhCKXs contained 
gibberellin-responsive element; 16 GhCKXs contained 
MeJA-responsive element; 14 GhCKXs contained 
auxin responsive element; 12 GhCKXs contained sali-
cylic acid responsive element; 11 GhCKXs contained 
defense and stress responsive element and meristem 
expression element; 9 GhCKXs contained drought-
inducibility element; 7 GhCKXs contained low-tem-
perature responsive element; and GhCKXs contained 
wound-responsive element; 7 GhCKXs contained low-
temperature responsive element; and only 2 GhCKXs 
contained wound-responsive element. This leads to 
the conclusion that GhCKXs were strongly associated 
with regulatory hormones and abiotic stresses.

Meanwhile, the response of GhCKXs to various abi-
otic stresses was thus verified by analyzing the heat 
map of GhCKXs expression under different stresses 
(cold, heat, salt and PEG) in the RNA-Seq database. In 
addition, the expression levels of eight cotton tissues 
(root, stem, leaf, torus, petal, stamen, pistil and calycle) 
were analyzed using RNA-Seq data (Fig.  4). The results 
showed that GhCKXs were expressed in various tissues 

(See figure on next page.)
Fig. 2  Chromosome localization of CKXs from four Gossypium species. A Chromosomal location of CKXs on chromosomes in G. hirsutum 
A subgenome (GhAt). B Chromosomal location of CKXs on chromosomes in G. hirsutum D subgenome (GhDt). C Chromosomal location of CKXs 
on chromosomes in G. barbadense A subgenome (GbAt). D Chromosomal location of CKXs on chromosomes in G. barbadense D subgenome (GbDt). 
E Chromosomal location of CKXs on chromosomes in G. arboreum (Ga). F Chromosomal location of CKXs on chromosomes in G. raimondii (Gr). The 
scale of the genome size was given on the left
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Fig. 2  (See legend on previous page.)
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with slightly different expression patterns. GhCKX6a-
At, GhCKX6a-Dt, GhCKX5c-At and GhCKX5c-Dt were 
highly expressed in root; GhCKX1a-Dt, GhCKX6b-Dt, 
GhCKX6c-At and GhCKX6c-At were highly expressed 
in leaves. GhCKX5b-Dt was the most highly expressed 
in the torus; GhCKX7b-At, GhCKX7b-Dt, GhCKX3b-
At and GhCKX3b-Dt were highly expressed in the petal; 
GhCKX3a-At and GhCKX3c-Dt were highly expressed in 
the stamen; in the calycle, GhCKX5a-At, GhCKX5a-Dt 
and GhCKX3c-At were the most highly expressed, and 
GhCKX5b-At was almost not expressed. The expression 
of GhCKXs were lower in both stem and pistil. As with 
Brassica oleracea L., the diversity of expression patterns 
showed that CKXs have a widespread biological function 
in the growth and development of cotton [40].

Gene ontology (GO) annotation analysis of GhCKXs
GO enrichment consists of Molecular Function, Bio-
logical Process, and Cellular Component. GO enrich-
ment of GhCKXs by Cotton FGD showed that GhCKXs 
embody the properties of genes in terms of both molecu-
lar functions and biological processes (Fig.  5). GhCKXs 
are the most involved in molecular functions, including 
catalytic activity (GO:0003824), oxidoreductase activity 
(GO:0016491), oxidoreductase activity, acting on CH-OH 
group of donors (GO:0016614), cytokinin dehydrogenase 
activity (GO:0019139), flavin adenine dinucleotide bind-
ing (GO:0050660) and UDP-N-acetylmuramate dehydro-
genase activity (GO:0008762). GhCKXs also participates 
in cytokinin metabolic process (GO:0009690) and obso-
lete oxidation–reduction process (GO:0055114).

Expression of GhCKXs vis‑à‑vis salt stress at different 
durations
To verify the potential role of GhCKXs in response to salt 
stress, cotton seedlings were treated with 100  mmol/L 
NaCl solution for different time of stress. And the expres-
sion levels of GhCKXs in leaves at NaCl solution for dif-
ferent durations were examined by qRT-PCR (Fig. 6). It 
was found that except for GhCKX3a-Dt, all 26 GhCKXs 
responded to salt stress in leaves of seedlings subjected to 
different levels and the tendency of expression changes. 
With the change in duration of stress, the expression 
levels of two genes in most A\D group showed the same 
trend. At 6 h of 100 mmol/L NaCl stress, 19 CKXs were 
shown to be significantly different in expression from 0 h. 
At 12 h of 100 mmol/L NaCl stress, 20 CKXs were shown 
to be significantly different in expression from 0  h. At 
24 h of 100 mmol/L NaCl stress, 24 CKXs were shown to be 
significantly different in expression from 0 h. The differences 
in the expression of 13 CKXs (GhCKX1a-At, GhCKX1a-Dt, 
GhCKX3a-At, GhCKX3b-At, GhCKX3c-At, GhCKX5b-Dt, 
GhCKX5c-Dt, GhCKX6a-Dt, GhCKX6b-Dt, GhCKX6c-At, 
GhCKX7a-At, GhCKX7a-Dt, and GhCKX7b-At) were sig-
nificant at 6 h, 12 h, and 24 h compared with 0 h, and most 
of them were extremely significant. Consequently, it is 
speculated that CKX genes are participated in the regula-
tion of salt stress.

Effect of silencing GhCKX6b‑Dt on NaCl stress in cotton
To verify whether the CKX genes responded to salt stress, 
the gene GhCKX6b-Dt, whose expression level of gene 
was significantly up-regulated at 6 h, 12 h and 24 h after 

Fig. 3  Expression patterns and promoter analysis of the GhCKXs. A Phylogenetic relationship of GhCKXs, the 5 major phylogenetic subgroups, 
designated as I to V. B Cis-acting elements in promoters of GhCKXs. C Heatmap of the expression of GhCKXs under different abiotic stresses 
at different times of stress (cold, heat, salt and PEG)
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treatment with 100 mmol/L NaCl solution, was silenced. 
As shown (Fig.  7A), pYL156: PDS plants showed albi-
nism, indicating successful gene silencing. After treat-
ment with 100  mmol/L NaCl, cotton leaves lost their 
luster and wilted after GhCKX6b-Dt silencing compared 
with pYL156. The expression of GhCKX6b-Dt in cotton 
leaves was detected by qRT-PCR. And the results showed 
(Fig. 7B) that the expression of GhCKX6b-Dt was signifi-
cantly decreased in the latter compared with pYL156 and 

pYL156: GhCKX6b-Dt, which illustrated the good effect 
of GhCKX6b-Dt silencing. After NaCl stress, leaves of 
GhCKX6b-Dt silenced plants showed dark brown spots 
after DAB staining, showing that GhCKX6b-Dt was 
more severely injured after silencing (Fig.  7C). Consist-
ent with the above results (Fig. 7D, E), both PRO content 
and MDA content were highly significantly elevated in 
GhCKX6b-Dt silenced plants after stress compared to 
pYL156 plants. In contrast, the SOD activity of silenced 

Fig. 4  Expression of GhCKXs in different tissues. Different tissues were represented as columns of different colors (root, stem, leaf, torus, petal, 
stamen, pistil and calycle), significance analysis of different tissues compared to root (*: 0.01 < p < 0.05; **: p < 0.01)



Page 9 of 16Liu et al. Environmental Sciences Europe           (2023) 35:82 	

plants after stress was significantly declined compared to 
pYL156 (Fig.  7F), illustrating the decline in antioxidant 
capacity after GhCKX6b-Dt silencing.

Interaction network of GhCKX6b‑Dt protein
Based on the homologous gene AtCKX6, which has the 
highest homology with GhCKX6b-Dt in Arabidopsis, the 
STRING database was used to construct an interaction 
network of CKX protein functions. The results showed 
that both AtCKX6 and Polyprenyltransferase 1 (PPT1), 
Glycerol-3-phosphate dehydrogenase SDP6 (SDP6), RNA 
dimethylallyltransferase 2 (IPT2), Adenylate dimethy-
lallyltransferase (cytokinin synthase) (IPT1), CHASE 
domain containing histidine kinase protein(WOL), Per-
oxisomal (S)-2-hydroxy-acid oxidase GLO4 (HAOX1), 
Peroxisomal (S)-2-hydroxy-acid oxidase GLO3(HAOX2), 
Aldolase-type TIM barrel family protein (GOX2), Aldo-
lase-type TIM barrel family protein (GOX1) and Per-
oxisomal (S)-2-hydroxy-acid oxidase GLO5 (GOX3) 
interacted with each other (Fig. 8A).

After analysis, the synthesis enzymes IPT associated 
with CK and the signaling molecule WOL were noticed. 
Therefore, the expression of each gene was determined 
by qRT-PCR in cotton seedlings after GhCKX6b-Dt 
silencing. As shown in Fig. 8B, the results demonstrated 
that there was no significant difference in the expression 
of each gene in pYL156 and pYL156:GhCKX6b-Dt plants 
before stress. However, the differences in the expression 
of IPT1, IPT2 and WOL were significant after NaCl treat-
ment, and the expression of IPT1, IPT2 and WOL were 

significantly increased in GhCKX6b-Dt silenced plants 
compared with pYL156 control plants.

Discussion
Cytokinin is an essential plant hormone that regulates 
various developmental and physiological processes [41, 
42]. CKX, a key regulatory enzyme for the irreversible 
degradation of the plant hormone CK, is indispensable 
for maintaining CK homeostasis [43]. Although the bio-
logical functions of the CKXs have been identified in a 
variety of plants [27, 44, 45] and were particularly promi-
nent in adversity stresses [46–48], functional studies of 
CKX in cotton are still limited. In this study, 27 GhCKXs, 
28 GbCKXs and 14 each of GaCKXs and GrCKXs were 
identified. And chromosomal locations, cis-acting ele-
ments and expression patterns under different abiotic 
stresses were analyzed, then the CKXs functions were 
characterized by VIGS technique. A review of the litera-
tures revealed that the genomes of other species closely 
related to cotton contain much smaller numbers of CKX 
members, for example, 7 CKXs in the Arabidopsis [49]; 
11 CKXs in the rice [50]; 12 CKXs in the Sorghum bicolor; 
11 CKXs in the Setaria italica; and 15 CKXs in the maize 
[51]. The CKX members has more genes in polyploid 
plants compared to haploids, CKX members contains 20 
genes in Eleusine coracana [52]; 16 CKXs in Glycine max 
[53]; and more CKXs in Triticum (31) [54].

The main reason for family gene amplification is gene 
duplication which can diversify gene functions to facili-
tate rapid adaptation of organisms to different environ-
ments [55, 56]. The main source of gene duplication in 

Fig. 5  Gene ontology (GO) analysis of GhCKXs 
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Fig. 6  Expression of GhCKXs at different durations of salt stress in leaves using qRT-PCR. Column indicate the relative expression levels of GhCKXs 
in leaves under 100 mmol/L NaCl stress for 0 h, 6 h, 12 h, and 24 h (*: 0.01 < p < 0.05; **: p < 0.01). The mean values were from three independent 
biological replicates
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eukaryotic genomes is interchromosomal duplication 
[57]. During the evolution of diploids to tetraploids, it 
can be noticed that the number of CKX genes in each 

branch of tetraploid cotton was almost twice as much 
as that of diploid cotton from the four Gossypium spe-
cies evolutionary tree (Fig. 1B). However, it can be found 

Fig. 7  Effect of silencing GhCKX6b-Dt on NaCl stress in cotton. A The phenotype of cotton after GhCKX6b-Dt silencing under NaCl stress. pYL156: 
PDS as a positive control, pYL156 was an empty vector as control, and pYL156: GhCKX6b-Dt was GhCKX6b-Dt silenced lines. B The relative expression 
level of GhCKX6b-Dt under NaCl stress. C DAB staining. D PRO content of empty control and VIGS plants under NaCl stress. E MDA content of empty 
control and VIGS plants under NaCl stress. F SOD activity of empty control and VIGS plants under NaCl stress. *0.01 < p < 0.05, **p < 0.01
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that one gene of GhCKXs was absent in branch II, which 
may be due to the loss of genes during evolution. Mean-
while, as seen from the chromosome position (Fig.  2), 
chromosome GaA04 evolved to tetraploid Gb translo-
cated to chromosome A05, but no gene was found on 
chromosome GhA05, indicating that the same trans-
location did not occur in G. hirsutum, so it was specu-
lated that the loss of the gene may have occurred here. In 
addition, the presence of a gene on chromosome GbD07 
and the absence of a gene on chromosome GhD07 sug-
gests that the gene has been altered during the evolu-
tion of the gene. Upon scrutiny, it was found that two 
genes appeared in G. hirsutum that were not annotated 
on any chromosome, which it was possible that A06 and 
D07 chromosomes were the result of translocation, and 
there were multiple genes in the GrD group of chromo-
somes that did not correspond to Gh and Gb. These may 
be due to the translocation of CKXs through fragmentary 
or whole genome replication events and did not replicate 
in tandem during evolution of four Gossypium species, 
which in turn diversified the CKXs, which was consistent 
with the results of the Brassica oleracea L. [40].

The results of cis-acting elements in the promoter 
indicate (Fig.  3B) that GhCKXs are involved in light 
response [58], hormone response and regulation of 
abiotic stress and also play an active role in plant 
growth and development. Multiple plant hormone 
cis-acting elements were predicted in the promoter 
region of GhCKXs, such as auxin responsiveness 
element, gibberellin-responsiveness element, salicylic 
acid responsiveness element, MeJA-responsiveness 
element and abscisic acid responsiveness element. 
It was demonstrated in a number of studies that CK 
interacted with multiple hormones through the CKXs, 
thereby regulating plant growth and development [59, 

60]. OsCKX4 integrated cytokinin and auxin signaling 
to control crown root formation in rice [44]. In addition 
to the promoter region of GhCKXs containing various 
phytohormone cis-acting elements, there were also 
various stress-related cis-acting elements such as 
wound-responsiveness element, defense and stress 
responsiveness element, drought-inducibility element 
and low-temperature responsiveness, which indicated 
that GhCKXs can respond to various abiotic stresses, 
and this is in accordance with previous reports. Reduced 
expression of OsCKX2, a cytokinin oxidase specific to 
inflorescence meristem tissue in rice, enhanced tolerance 
to salt stress [61]; overexpression of CKX1 in tobacco and 
barley improved drought tolerance and heat tolerance in 
plants [46, 62]. Nishiyama et al. showed that CK-deficient 
CKX overexpression plants (35S:CKX1-35S:CKX4) 
became more tolerant to salt and drought in Arabidopsis 
compared with WT plants [23]. Heat map analysis in this 
study revealed the same results (Fig. 3C), that CKX genes 
play an important role in response to abiotic stresses 
(cold, heat, salt and PEG). In addition, we found that a 
few GhCKXs contained meristem expression elements, 
and most GhCKXs were expressed in various tissues 
(Fig.  4), indicating that GhCKXs play a role in plant 
growth and development [63].

The salt tolerance mechanism is extremely complex 
involving ion transport, osmoregulation and oxida-
tive stress, each of which is in turn regulated by multi-
ple components [64–66]. As we all know, cytokines can 
regulate salt tolerance in plants [67, 68], with a positive 
or negative effect [68, 69]. Here, it was found that most of 
the GhCKXs were significantly distinct under NaCl stress 
during different time, indicating that GhCKXs responded 
to salt stress. One CKX gene, GhCKX6b-Dt, was found 
to respond to salt stress as revealed from RNA-Seq data, 

Fig. 8  Interaction network of GhCKX6b-Dt protein and expression of related genes after GhCKX6b-Dt silencing. A The CKX6 represented the protein 
AtCKX6 corresponding to the protein in Arabidopsis with the highest homology to GhCKX6b-Dt. B Relative expression levels of IPT1, IPT2 and WOL 
in GhCKX6b-Dt silenced plants before and after NaCl stress. pYL156: PDS as a positive control, pYL156 was an empty vector as control, and pYL156: 
GhCKX6b-Dt was GhCKX6b-Dt silenced lines. *0.01 < p < 0.05, **p < 0.01
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and its expression gradually increased with time and the 
difference was highly significant, indicating that this gene 
responded positively to salt stress, but negatively regu-
lated salt stress. This’s why GhCKX6b-Dt was selected 
for performing virus induced gene silencing experiments. 
Abiotic stresses contribute to the excessive production 
of ROS in plant cells, leading to oxidative damage to bio-
molecules [70]. Damaged biomolecules include products 
of protein oxidation, enzyme inactivation, lipid peroxida-
tion, increased membrane fluidity, chlorophyll degrada-
tion, nucleic acid damage, and apoptotic pathways, and 
these damages can affect plant growth and development 
[70, 71]. In this study, compared with control plants, 
GhCKX6b-Dt silenced plants wilted after stress, in which 
both PRO and MDA contents were highly significantly 
increased (Fig. 7D, E), demonstrating that GhCKX6b-Dt 
silenced plants produced excessive ROS to expose the 
plants to severe salt stress, and vice versa, indicating that 
GhCKX6b-Dt positively regulates salt stress and CK neg-
atively regulates salt stress, which is consistent with the 
results of previous studies [72]. SOD is the most effective 
scavenger of ROS and is the first line of defense against 
ROS-induced damage under abiotic stresses [73]. Com-
pared with control plants, the SOD activity of GhCKX6b-
Dt silenced plants was significantly decreased after stress 

(Fig. 7F), presumably GhCKX6b-Dt-silenced plants failed 
to produce an appropriate amount of SOD to scavenge 
reactive oxygen species, resulting in wilting of the plants 
and reduced salt tolerance.

After GO analysis, the biological processes involved 
in the GhCKXs were revealed to be CK metabolic pro-
cess and obsolete oxidation–reduction process. And the 
molecular functions were catalytic oxidoreductase activ-
ity (oxidoreductase activity and cytokinin dehydrogenase 
activity) and UDP-N-acetylmuramate dehydrogenase 
activity and flavin adenine dinucleotide binding, which 
illustrate the involvement of GhCKXs in the regulation 
of redox dynamics under stress. Protein interactions pre-
dicted by homologs of GhCKX6b-Dt in Arabidopsis thal-
iana revealed that this gene is strongly associated with 
CK synthase (IPT1 and IPT2), CK receptor (WOL) and 
redox reaction-related enzymes (GOX1, GOX2, GOX3, 
HOX1 and HOX2). Therefore, it was hypothesized that 
CKXs regulate the CK content in cotton by interacting 
with IPT and WOL. Seedlings after GhCKX6b-Dt silenc-
ing wilted more heavily than the negative control. It was 
hypothesized that GhCKX6b-Dt might play an important 
role in response to NaCl stress (Fig. 9). When GhCKX6b-
Dt silenced plants were subjected to salt stress result-
ing in cellular damage, excessive ROS were produced, 

Fig. 9  Mechanism model of GhCKX6b-Dt responding to NaCl stress in cotton. The figure was drawn using the software Figdraw



Page 14 of 16Liu et al. Environmental Sciences Europe           (2023) 35:82 

causing an imbalance of redox reactions in the plant, and 
the plants showed wilting. It has been shown in the lit-
erature that the ion stress and osmotic stress caused by 
salt pollution can be alleviated by osmotic regulating 
substances such as proline [74, 75]. Salt stress can affect 
CK content, and genes related to biosynthesis and signal 
transduction were significantly up-regulated or down-
regulated, including CKXs and IPTs [76]. The results 
show that GhCKX6b-Dt regulates CK and thus regu-
lates the content of proline, which enables antioxidant 
enzymes to clear ROS and relieve the damage of plant 
cells caused by salt stress [21], resisting salt stress and 
normalizing plant growth.

Conclusion
In this study, the CKXs were characterized based on the 
results of phylogenetic relationships, gene chromosome 
localization and cis-acting element analysis. In addition, 
the expression patterns of GhCKXs were investigated 
under different abiotic stresses, while using VIGS 
technology to understand the response of GhCKXs to 
salt stress as a function. GhCKX6b-Dt silenced plants 
were found to have increased PRO and MDA contents, 
decreased SOD activity, and reduced ROS scavenging 
capacity after stress, and thus were severely injured. 
Combining GO analysis and the gene interaction network 
of GhCKX proteins, it is hypothesized that GhCKX6b-Dt 
alleviates salt stress by scavenging reactive oxygen species 
through the antioxidant system. The results revealed that 
GhCKX6b-Dt positively regulates salt stress, while CK 
negatively regulates salt stress. The results of this study 
provide a basis for further studies on the response of 
CKXs to regulate CK homeostasis and to abiotic stresses 
during plant development.
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