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Abstract

Glyphosate (GLY), the most widely used herbicide active ingredient (Al) in the world, is frequently detected in aquatic
environments where it can affect non-target organisms. Globally, more than 2000 commercial GLY-based herbicides
(GBHs) are used to control weeds. Non-target organisms are exposed to complex pesticide formulations under real
environmental conditions, but the co-formulants contained in GBHs are classified as so-called inert and inactive ingre-
dients in terms of their biological effects. The main objective of this comprehensive review is to compile the results

of aquatic ecotoxicological studies on the side-effects of GLY, GBHs, and their formulating agents. Based on the results
demonstrated for a variety of plant and animal aquatic organisms, oxidative stress appears to be a major trigger

for these adverse effects, affecting the integrity of DNA and other biochemical functions. Furthermore, there is evi-
dence of impairment of various physiological and behavioral functions. Adverse effects of GLY and GBHs have been
observed even at very low concentrations. There are also differences in the sensitivity of the aquatic organisms tested,
even with similar lifestyles, habitats or identical taxa. The studies typically investigate the short-term effects of a single
exposure to GLY/GBH on a single species, whilst in reality multiple applications of GBHs together with other pesticides
are common during a cropping cycle. Moreover, the interactions between GLY/GBHs and other aquatic contaminants
are rarely studied. Higher toxicity of GBHs compared to GLY alone has often been observed, demonstrating that co-
formulants can be highly toxic on their own and markedly increase the toxicity of the GBH formulation. The possible
impurities in GBHs, such as heavy metals, can cause additional problems for the environment and food safety. The
widespread and massive use of GBHs leads to increased exposure and environmental hazards. In addition, the need
for a revision of the risk assessment system is emphasized. According to the results of aquatic ecotoxicological studies,
the current use and pollution of the aquatic environment by GLY/GBHs is highly problematic and cannot be consid-
ered environmentally sustainable. It is, therefore, necessary to at least tighten the permitted forms of use.
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Introduction
Over the last decade, an increasing number of scien-
tific studies have investigated the effects of the most
widely used herbicide active ingredient (AI) glypho-
sate (GLY) on non-target organisms [1-3]. GLY
(N-(phosphonomethyl)-glycine) is a phosphonomethyl
derivative of the natural amino acid glycine [4]. Cultiva-
tion of GLY-tolerant (GT) genetically modified (GM)
crops such as soybeans and maize in North and South
America has led to a massive increase in the use of GLY-
based herbicides (GBHs) and they have become the most
widely used herbicide formulations in the last decade
[5-8], despite their known water-polluting properties
and the emergence of GLY-resistant weeds [1]. Based on
a European survey, GBH sales were estimated at 44,250
tonnes of Al, while the average GLY use in 2017 was
about 0.24 kg Al ha™! [9]. The global market of GBHs
was estimated at 4438.5 million USD in 2020 [10], but it
is very difficult to find accurate and up-to-date data on
global use and sales of GBHs because detailed sales data
are withheld as commercially sensitive information [11].
GLY exerts its herbicidal activity by inhibiting
5-enoylpyruvylshikimate-3-phosphate synthase (EPSPS)
of the shikimate metabolic pathway. This leads to a block-
age of the biosynthesis of essential aromatic amino acids
and consequently to plant death. The shikimate meta-
bolic pathway is present in all plants and thus GLY acts
as a non-selective broad-spectrum herbicide. However,
the shikimate pathway is also present in most fungi and
some bacteria, but it is absent in animals [12]. There-
fore, the application of GBHs as non-selective herbicides
not only causes the death of plant species, but can also
negatively impact fungal and bacterial populations [13,
14]. In GBHs, different salts of GLY such as GLY-isopro-
pylammonium salt (GLY-IPA), GLY-trimethylsulfonium
salt or GLY-diammonium salts are used to enhance the
solubility of the AI [15, 16]. In addition to GLY salts, vari-
ous co-formulants are included in commercial GBH for-
mulations. The key property of co-formulants is to act as
surfactants enabling effective wetting and penetration
of the plant cell wall, thereby permitting the Al to exert
its herbicidal action [17]. For example, the use of POEA
(a mixture of polyethoxylated tallow amines sold under
product names such as MON 0818) in GBHs promotes
GLY penetration into the plant cell [18]. Crucially from
an environmental impact perspective, in addition to their
designed herbicidal activity, GBHs have also been found
to exert direct insecticidal effects on numerous non-tar-
get arthropod species including lacewings (Chrysoperla
carnea) [19], spiders (e.g., Pardosa spp.) [20-22], mos-
quitos (Aedes aegypti larvae) [23], and pollinators such
as bees (e.g., Megachile spp. and Apis mellifera) [24—26].
Whether these insecticidal effects of GBHs are due to
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GLY, the co-formulants, or a combination of the two
cannot yet be accurately determined because most stud-
ies have not conducted a comparison between GLY and
GBHs.

Co-formulants in commercial pesticides are consid-
ered to be inactive components in terms of the primary
biological action of the formulation. As a result, co-for-
mulants are usually listed as “inert” and their identity
withheld on the packaging. Therefore, a simpler envi-
ronmental risk assessment (ERA) has been deemed suf-
ficient for co-formulants compared to Als for regulatory
purposes [27, 28]. Furthermore, regulatory authorities
acquire data about co-formulants through individual
stand-alone studies rather than considering them within
formulations. Consequently, the differential effects of
commercial pesticide formulations on ecosystems and
humans are typically not due to the inherent attributes of
co-formulants as independent components, but to how
these co-formulants modify the toxicity of Als [29]. How-
ever, numerous studies spanning many years have dem-
onstrated the high toxicity of co-formulants and also the
increased combined toxicity of Als and co-formulants in
various commercial pesticide formulations of all types
(herbicides, insecticides, fungicides) compared to the
toxicity of individual Als. This applies to POEA, which
is used as a co-formulant in GBHs [30-32], as well as its
alternatives [33, 34]. Due to incriminating scientific evi-
dence, the use of POEA in GBHs has been banned in the
European Union (EU) by Regulation 2016/1313 [35].

Regulation of commercial pesticide formulations in
the EU is based on a detailed and harmonized two-tier
system [36]. Als are registered at the EU community and
managed by the European Commission, whilst commer-
cial pesticide formulations are approved at the Member
State level [37]. Several studies indicate that pesticide
authorization needs to be revised [19, 38], including the
re-evaluation of current testing systems during the regis-
tration process [19]. The approval and ERA for commer-
cial pesticide formulations consider certain hazards but
do not act through central regulation and restrictions.
Moreover, EU Member States governments or their affili-
ated governmental organizations are required to take
into account the positions of all stakeholders, including
industry and also patent holders, during the risk assess-
ment procedure [39].

Originally, non-selective GBHs were used exclusively
for pre-emergence weed control. However, with the
launch of GLY-tolerant genetically modified (GT GM)
crops in 1996 (which are not authorized for cultivation
in the EU) and the practice of pre-harvest desiccation in
agriculture, the use of post-emergence GBHs has risen
exponentially, leading to a vast increase in use over the
last 25 years [6, 40, 41]. As a consequence of its escalating
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and excessive global use, GLY has become a ubiquitous
pollutant in aquatic ecosystems [42]. Generally, GLY is
directly sprayed onto crop fields not only for weed con-
trol but also for no-tillage farming, where a significant
proportion is taken up by plants or enters the soil. In
soil, GLY may be transported by surface water runoff,
adsorbed to soil particles, enter groundwater by infiltra-
tion, or enter surface waters. The occurrence and con-
centration of GLY in the aquatic environment after its
application are highly dependent on abiotic (e.g., pH, sus-
pended materials, hydrological conditions), biotic (e.g.,
microbial composition), and climatic conditions (e.g.,
rainfall frequency and intensity) [43—-45], in addition to
the timing and frequency of pesticide treatments [44, 46].
In addition, GBH co-formulants such as POEA, similar
to GLY, have been found to be widely distributed in the
Midwest of the USA (e.g., Iowa, Illinois, Missouri) [47],
where agricultural areas are large and the cultivation of
genetically modified GT crops is concentrated [48]. Fur-
thermore, POEA has been shown to persist in soil along
with GLY and its primary metabolite aminomethylphos-
phonic acid (AMPA) [47, 49, 50], and can enter natural
waterways [49, 51, 52]. Thus, GLY and co-formulants
coexist in soil and water courses, although their com-
bined toxic effects on the environment poorly are poorly
understood.

Various aquatic organisms are directly or indirectly
exposed to the harmful effects of GBH residues. To deter-
mine the potentially harmful effects of chemical contami-
nants on non-target aquatic organisms, a specific group
of organisms is usually used in ecotoxicological studies
to ensure environmental relevance. Examples of these
test organisms include aquatic unicellular plant organ-
isms (e.g., algae), aquatic invertebrates (e.g., water fleas)
and vertebrates (e.g., fish). As part of the EU authoriza-
tion process for pesticide formulation, an Al, safener or
synergist shall only be approved, if the results of the risk
assessment confirm acceptable or no risks [36]. As part of
the tiered risk assessment for pesticides, the ecotoxico-
logical test methods for assessing aquatic ecotoxicity are
covered and summarized in the corresponding technical
guidance document of the European Food Safety Author-
ity (EFSA) [53]. The authorities of the EU Member States
are responsible for ensuring the safety of pesticide for-
mulations on the basis on the requirements of Regulation
(EC) 1107/2009 [36].

Currently, the occurrence of GLY in surface waters is
a global phenomenon, especially in regions where pre-
harvest desiccation practices are widespread and the cul-
tivation of GT GM crops takes place, so that the exclusive
use of GBHs is extremely high. As a result, GLY contami-
nation levels in surface water can reach up to 5200 pg 1™
[39, 54, 55]. The increased use GLY through desiccation
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or post-emergence application to GT GM crops gener-
ally increases the release of GLY and its co-formulants
into the environment, which in turn leads to increased
exposure. Such exposure can occur in any aquatic sys-
tem, so increased toxicity can be exerted on all aquatic
organism concerned, from aquatic microorganisms, algae
and plants to aquatic invertebrates and vertebrates. Due
to its amphoteric properties, GLY has both acidic and
basic properties and is therefore highly soluble in water,
although its detection in various environmental samples
and matrices is difficult [56, 57]. In the past, GLY was not
part of general pesticide monitoring programs, so envi-
ronmental concentrations of GLY and its metabolites
were underestimated. However, with advances in detec-
tion methods, GLY has been shown to be a ubiquitous
environmental pollutant [58]. The primary metabolite
of GLY, AMPA, is more mobile than the parent com-
pound [59] and is also frequently detected in various
environmental matrices such as groundwater, surface
waters, soil, and air [39, 60-63]. However, it should be
kept in mind that the presence of AMPA in environmen-
tal matrices such as groundwater, influents, or sewage
sludge is not exclusive due to GLY metabolism, as it can
also originate from phosphonate detergents used in vari-
ous detergents [64].

Surveys of GLY residue levels in various water sam-
ples have shown a wide range of variation [39]. Accord-
ing to the U.S. Geological Survey, GLY and/or AMPA
were detected in 59% of the 470 surface water sites ana-
lyzed, while the occurrence of the measured compounds
in groundwater samples was less frequent (8.4% of 820
sample sites). AMPA was generally detected more often
than GLY in the samples analyzed [51]. In surface waters
collected in the Rio de Janeiro region, the GLY level
detected was 2.6-10.1 pug 1! (in >40% of the samples
analyzed) [65]. In Argentina, the average concentration of
GLY and AMPA detected in surface water samples was in
the range of 17.5-35.2 pg 1™ and 0.6-2.1 pg 1™}, respec-
tively [66]. However, maximum GLY and AMPA concen-
trations of up to 258 pg 1=! and 5865 pg 17!, respectively,
were detected in the groundwater and surface water sam-
ples [52].

Based on the European monitoring studies over the
past decade, the extent of GLY contamination in surface
waters in the EU appears to be lower (typical GLY con-
centrations detected were between 0.05 and 0.85 pg 171),
although residues are consistently present [39]. In a mon-
itoring study of sub-catchments with different land use
(agricultural, urban) in Switzerland, the maximum GLY
concentration of 4.15 pg 1! was detected in the sampled
water at peak discharge during storm events throughout
the year, so that the seasonal concentration and occur-
rence of GLY cannot be explained by agricultural use
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alone [67]. According to a Dutch database with informa-
tion on 161 sampling points, 90% of the surface water
samples analyzed in 2020 contained GLY, while in 2019
only one sample contained GLY above 77 pg 1™ (152
sampling points) [68]. In Hungarian, Swiss, and Italian
water samples, the GLY concentrations detected were
between 0.035 ng ml™! and 96 pg 1™ [39, 55, 69, 70].
However, GLY and AMPA concentrations in wastewater
after rainfall can reach up to 384.9 pg 1! and 47 pg 1*
[71]. The observed differences can primarily be explained
by different agricultural locations, characteristics of the
catchment area and natural precipitation conditions,
which lead to different runoff and leaching of AI into
surface waters [55]. Furthermore, co-formulants are also
found in environmental compartments, although they are
generally not monitored [48, 49], which may have adverse
effects on non-target organisms [72, 73]. In summary,
numerous scientific publications have demonstrated the
highly unpredictable risks of GLY to aquatic ecosystems
(39, 74, 75].

The objective of this review is to present and sum-
marize pertinent information reported since the EU
Commission Directive 2010/77/EU on the ecotoxico-
logical adverse effects of GLY, GBHs, and their for-
mulating agents on various non-target organisms and
communities. This study not only presents the aquatic
ecotoxicological concerns related to GLY/GBHs, but also
summarizes the combined effects of GLY and GBHs with
other aquatic pollutants (e.g., other pesticide residues,
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heavy metals, nano- and plastic particles) or pathogens.
Systematic searches were conducted in scientific data-
bases including Science Direct, Scopus, Web of Science,
and other relevant databases. In addition, the references
cited in the selected studies were also taken into account
when necessary. Furthermore, non-public ecotoxicologi-
cal studies financed and commissioned by the industry,
that were not included in the application dossiers for re-
approval [76] were excluded from evaluation. In total, an
extensive reference database of more than 500 scientific
publications dealing with the ecotoxicological aspects of
GLY or GBHs was assessed. This review focuses specifi-
cally on the articles relating to aquatic ecosystems.

Ecotoxicity to aquatic organisms and ecosystems

Aquatic organisms are highly exposed to pollution as
contact with waterborne xenobiotics is unavoidable. The
ecotoxicity of GLY and GBHs has been studied in numer-
ous aquatic organisms, including various algae species
[77, 78], small planktonic crustacean such as Daphnia
magna [79], molluscs [80], fish [81], and amphibians [82]
(Fig. 1). Due to the long-lasting toxic effects of GLY, it
is classified by the European Chemicals Agency ECHA
as toxic to aquatic life (aquatic chronic 2; H411) [83].
However, a number of studies indicate that even at low
concentrations GLY exhibits a toxicity to the aquatic
environment that would justify a category 1 classifica-
tion for chronic and even acute aquatic toxicity [81, 84].
In turn, GBHs are very rarely approved for use in the
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aquatic environment, yet GLY, its metabolite AMPA
and co-formulants of GBHs are frequently detected in
surface waters worldwide [85]. Moreover, as mentioned
above, increased pollution levels by GLY residues due
to the increased application of GLY during desiccation
or on GT GM crops can affect all aquatic organism in
the affected water bodies. This is a clear example of an
increased likelihood of an existing hazard occurring due
to the increased exposures to the aquatic pollutant.

Effects on aquatic microorganisms

Based on the scientific literature, the changes in aquatic
microbial communities can be determined using direct
(e.g., cell number, density, composition) and indirect
(e.g., extracellular secretion, rate of leaf-litter break-
down, respiration) endpoints following GLY exposure
[86—90]. As little as 10-100 pg 1"! GLY can cause direct
adverse effects on most bacterioplankton taxa [91] and
changes in the structure of freshwater microbial com-
munities [87]. However, the effects on aquatic bacterial
communities were usually observed at higher concentra-
tions (>2.5 mg 1™!), resulting in a loss of biodiversity [88]
(Table 1). In addition, a reduced decomposition rate of
leaf-litter was observed in natural streams, possibly due
to the negative effects of GLY (710 pg 1) on the micro-
bial community [90]. In artificial microcosms, GLY had
no significant impact on the composition of the micro-
bial community in water [92, 93], but community pat-
terns of transcription were significantly altered [92]. The
observed effects could be mainly due to the utilization of
GLY by microorganisms as a phosphate source [92]. Fur-
thermore, selective growth of different bacterial groups
has also been demonstrated [94].

In aquatic environments, biofilms colonizing various
artificial and natural substrates are compact communities
of photoautotrophic (algae species) and heterotrophic
microorganisms (bacteria, fungi, protozoa) embedded
in their extracellular polymeric substance (EPS) secre-
tions [89]. This EPS matrix is mainly composed of poly-
saccharides, proteins, lipids, nucleic acids and lectins,
which can serve as sorption sites [95]. Scanning electron
microscopy has revealed the intensive EPS production,
primarily through secretion by heterotrophic microor-
ganisms in freshwater biofilm communities after expo-
sure to 100 pug 17! GLY, particularly in the presence of the
GBH co-formulant POEA [87]. This indicates a protec-
tive mechanism of bacterial and algal species in natural
biofilms to remove and reduce the harmful effects of con-
taminants. Furthermore, GLY can affect the metabolic
processes of bacteria and algae in biofilm communities
[96]. The effects of GBH even at very low concentrations
of 10 ug 1I™! on the composition of the microbial com-
munity were significantly dependent on temperature.

Page 5 of 62

However, the effects of multiple stress factors on the
microbial composition in water and sediment were com-
pletely opposite [97]. GLY at a high concentration of
2.54 g 1! caused a significant reduction (—47%) in the
respiration of heterotrophic species in biofilm commu-
nities [86]. One type of Roundup GBH reduced the cell
density of planktonic Pseudomonas aeruginosa under
aerobic conditions, whereas planktonic anaerobic growth
was increased in the presence of GLY (from 84.5 mg17!)
[98]. Furthermore, a concentration-dependent low
growth of P aeruginosa biofilms was also observed [98].
Based on a study conducted on the luminescent marine
bacteria Vibrio fischeri and other test organisms such
as crustaceans and plants, it was found that quaternary
ammonium salts (e.g., diisopropylammonium chloro-
acetate) could be a safer alternative to GLY as they have
lower toxicity but show comparable or slightly greater
herbicidal activity compared to GLY [99]. However, the
potential toxic effects of these quaternary ammonium
salts on other non-target organisms remain to be inves-
tigated. Compared to Daphnia magna, V. fischeri was
found to be nine times more sensitive to the toxic effects
of Roundup formulations [100]. Moreover, aquatic test
organisms were more sensitive to GBHs than soil micro-
bial strains although a direct correlation between the tox-
icity of the formulations and the presence of POEA could
not be demonstrated [100]. GLY and AMPA showed
less negative effects in experiments with Tetrahymena
pyriformi compared to V. fischeri, but with GLY display-
ing higher toxicity than AMPA in all cases [101]. How-
ever, no effects of Roundup on the aggregation behavior
and cell morphology of Tetrahymena thermophila were
observed, proteomic changes were indicated after GBH
exposure (77.5-171 mg 17!) [102]. Monitoring of free-
living pelagic and benthic biofilm-associated bacterial
communities in microcosms revealed a transient increase
in total cell number and bacterial diversity of pelagic
bacterial communities in the water column due to the
presence of GLY, while biofilm communities were less
affected [103]. Various co-formulants can also be used as
nutrient sources by bacterial communities in freshwater
biofilms, especially under nutrient-poor conditions. For
example, non-ionic tallow-based alkylbis(2-hydroxyethyl)
amines can be utilized as carbon and energy sources by
various Pseudomonas species during their growth [104].

Effects on algae species

The identification of potential harmful effects on non-
target plant organisms is an essential part of the ecotoxi-
cological evaluation of herbicides. Based on the available
ecotoxicological studies, the various adverse effects of
GLY have been detected at much lower concentrations
(1-100 pg 1™!) on phytoplankton communities compared
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to detectable GLY concentrations in surface waters. In
many cases, however, the effects are only seen at much
higher test concentrations (Table 2). A 48-h exposure to
a Roundup GBH resulted in a significant reduction in
growth and an increase in cell size of the unicellular green
algae Selenastrum capricornutum with a 96-h ECy, value
of 15.60 mg 1! [78]. The most notable toxic effects were
observed on the ultrastructure of exposed cells, including
disruption of thylakoids and mitochondria, lipid accu-
mulation, increased size and number of starch granules,
and formation of electrodense bodies [78]. Larger cells of
Scenedesmus vacuolatus, increased size of vacuoles and
changed the stacking pattern of thylakoids after a 96-h
exposure to the GBH Glifosato Atanor (containing 48%
GLY as isopropylamine salt) at the range of 6-8 mg 1
with an addition of 2.5% of the surfactant alkyl aryl poly-
glycol ether [105].

Moreover, altered oxidative stress parameters were
also demonstrated. The observed effects can be attrib-
uted to an oxidative stress response resulting from
the toxic mechanisms of the GBHs studied [105]. Fur-
thermore, exposure to GBH Factor 540R affected the
structure and functional properties of the freshwater
phytoplankton community collected from agricultural
areas in a concentration-dependent manner [106]. As
a result, lower diversity (>5 pg 1™!) and pigment con-
tent (chlorophyll-a (chl-a) and carotenoids,>1 pg 17%)
and altered biochemical and physiological parameters
such as lipid peroxidation, antioxidant activity of cata-
lase, superoxide dismutase (SOD), ascorbate peroxidase
(>500 pg 17!) [106], in addition to photosynthetic param-
eters (>10 pg 17!) [107] were observed. It is worth not-
ing that different algal and cyanobacterial species exhibit
different sensitivity to GLY, even within the same taxa,
resulting in significant differences in reported toxicity
levels [108-110]. For instance, Pseudokirchneriella sub-
capitata showed a 72-h ECq, range of 24.7-41 mg 1™
[30, 111], while Desmodesmus subspicatus showed a 72-h
EC;, range of 72.9-166 mg ™! [112-114]. Exposure to a
GBH (Roundup PowerFlex—4 mg a.e. GLY 17!) reduced
algal community diversity by 6%, and the decreasing
effect was much more pronounced at the higher test
temperature (20 °C vs. 15 °C) [115]. However, the density
of algae was not affected by the treatments. In addition,
an interaction between herbicide and temperature was
observed, indicating a temperature-specific effect of GBH
on the diversity of algal community [115]. The growth
of Chlorella vulgaris was promoted after individual and
combined exposure to GLY and AMPA (<0.5 mg 17%). In
contrast, inhibition of algal growth was observed at the
higher concentration tested (>5 mg 171) [116]. However,
the inhibitory effect of AMPA was only demonstrated in
the presence of GLY [116].
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GBHs can act as chemical stressors on phytoplankton
community structure and also stimulate the synthesis
of cyanotoxins by cyanobacteria. Individual exposure
to GBH Faena (1.02-2.70 mg 17') resulted in reduced
growth rates of the microalgae studied (Ankistrodes-
mus falcatus, C. vulgaris, P. subcapitata, and Scened-
esmus incrassatulus), but stimulated the proliferation
of the toxigenic cyanobacteria Microcystis aeruginosa
[117]. The simultaneous presence of GLY and cyano-
bacteria increased stress to the microalgae. In addition,
impairments in growth rate, macromolecule content,
and population dynamics were observed, resulting in
increased levels of catalase and glutathione peroxidase
due to oxidative stress (>0.74 mg 171) [117]. Additionally,
changes in the external morphology and ultrastructure
of microalgae were also demonstrated (e.g., loss of cell
wall integrity and typical cell form, differences in starch
and polyphosphate granules) [118]. Moreover, the pres-
ence of M. aeruginosa increased the damage observed
during exposure to GBH [118]. Species-specific and
dose-dependent stimulatory effect of GLY were found in
several freshwater cyanobacteria species [119]. A strong
correlation between reduced phosphonate levels and
algal growth was demonstrated. Moreover, the uptake
of phosphate was strongly dependent on the GLY con-
centration [119]. A concentration-dependent decrease
in growth and chlorophyll-a content was observed in
GLY-exposed M. aeruginosa cells (1-10 mg 17'). Further-
more, increased malondialdehyde levels and antioxidant
enzymatic activities (SOD, catalase, peroxidase) were
observed (1-2 mg 1™%). According to the further results
of the study, GLY induced apoptosis in the treated cells
and triggered the release of cyanotoxin in M. aeruginosa
[120]. After exposure to GLY (6.09 and 0.9 mg17'), a con-
centration-dependent growth inhibition was observed in
the dinoflagellate Prorocentrum donghaiense. Moreover,
P. donghaiense was unable to utilize GLY as a phospho-
rus source [94]. In an 8-day microcosm study, GLY led to
a drastic decrease in the abundance of phycocyanin-rich
picocyanobacterial by 85% [121]. Exposure to various
GBHs also resulted in reduced abundance of phycocy-
anin-rich picocyanobacterial [122]. The abundance of
phytoplankton was not affected by exposure to GLY-
IPA, while increased net total abundance was observed
after the exposure to GBHs (Glyphosate II Atanor and
Roundup Max) [122].

Under field conditions, a decrease in chl-a was
observed in the collected biofilm samples at all GLY
concentrations tested (0.25-2.54 g 17'). Furthermore, a
dose-dependent decrease in biomass and gross primary
production of autotrophs in biofilms was observed [86].
A slight decrease in algal biomass was observed after
treatments with both pure GLY (100 pg I"!) and a GBH
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(Roundup Classic) at the same GLY equivalent concen-
tration in freshwater biofilms grown under natural condi-
tions in Lake Balaton (Hungary) compared to the control
[87]. In biofilms grown in the River Danube (Hungary),
GLY (100 pg I™") initially led to a decrease in algal bio-
mass, followed by an increase and a realignment of
algal species in the biofilms. GLY-sensitive species were
replaced by more tolerant ones (e.g., filamentous green
species of algae), leading to a temporary decrease in bio-
mass through various selection processes [87]. Treatment
with Roundup Classic (100 ug Al 17') after 2 weeks also
resulted in a decreased algal biomass in biofilms from
Lake Balaton and the River Danube, with POEA increas-
ing the toxicity of the GBH [87].

Similar selection processes have been found in natural
communities of marine microphytobenthos following
treatment with a Roundup GBH [123]. Several studies
using standard algal growth inhibition assays [124] and
community-level biofilm studies [125, 126] have dem-
onstrated the increased combined toxicity of GLY and
the additives in GBHs. At lower concentrations (0.06—
29.6 pg 1™!), GLY can serve as a source of nutrients and
phosphorus for algae species [125, 127]. In addition,
GLY can also trigger pathways for protein and metabo-
lite synthesis [108, 128], which can lead to increased bio-
mass growth. The effects of GLY on algal communities
in biofilms are highly site-specific and are greatly influ-
enced by the specific environmental characteristics of
natural aquatic habitats (e.g., dissolved oxygen content,
pH), in addition to various climatic and weather condi-
tions in different years [4, 129]. Most of the effects of
GLY (0.4 mg 17!) on freshwater periphyton were revers-
ible after a recovery time of 7 days. In contrast, the higher
tested concentration tested (4 mg 1™') caused irreversible
changes in the exposed periphyton community based on
the applied recovery time of 21 days [130]. Exposure to
GLY and GBHs at a much higher concentration (3 mg 1)
increased the proportion of blue-green algae, while the
ratio of green algae and diatoms in freshwater periphy-
ton decreased [126]. Furthermore, the periphyton com-
munity proved to be much more tolerant to the effects
of GLY compared to phytoplankton [131]. The effects of
GLY on the composition of benthic diatom communi-
ties have also been demonstrated [132]. Furthermore, a
higher combined toxicity of GBH formulations (such
as Glifosato II Atanor, Roundup Max) was observed
compared to the toxicity of technical grade GLY alone
[126]. At a lower GLY concentration (10 pg I™'), inhib-
ited growth of the autotrophic community was observed
in the exposed natural freshwater biofilm communities.
However, no effects on pigment and polysaccharide con-
tent or esterase enzyme activity were observed [133].
Additionally, in freshwater biofilms exposed to GLY,
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even at very low concentration (0.01 mg I~} GLY-IPA),
decreased chlorohyll-a content, photosynthetic efficiency
and capacity, and changes in diatom community com-
position [134]. Although, the toxicity of AMPA and the
effects on the activity of antioxidant enzymes were not
observed after either GLY or AMPA exposure [134].

The combination of technical-grade GLY or Roundup
Max GBH and the presence of the invasive mussel Lim-
noperna fortunei resulted in antagonistic effects on phy-
toplankton [135]. The higher level of available nutrients
provided by GLY was offset by the filtering activity of
mussels and dramatic reductions in pico- and phyto-
plankton due to mussel grazing [135]. In another study,
increased phytoplankton abundance was observed espe-
cially for Microcystis species (up to 289% and 639%) after
exposure to GLY and a GBH Glifosato Atanor (6 mg Al
171, respectively. In contrast, the growth of Microcystis
species was limited after treatment with Roundup Max
[136]. The evenness of the phytoplankton community
was also decreased in the exposed groups. However, the
presence of L. fortunei significantly increased the even-
ness of the communities exposed to GLY or GBHs [136].
In addition to herbicides that directly inhibit photosyn-
thesis (e.g., atrazine), other pesticide Als such as GLY
can also affect photosynthetic and respiratory processes
through their effects on various metabolic pathways
[127, 129]. The adverse effects of GLY on photosynthetic
processes can be mainly explained by the direct or indi-
rect inhibition of plastoquinone biosynthesis; quinone
compounds are found in chloroplasts, which are cru-
cial electron transport molecules in the light reaction
of photosynthesis [137, 138]. Moreover, the decreased
chlorophyll concentration [139] can directly affect the
rate of electron transport in the chloroplast [129]. After
GLY exposure, reactive oxygen species (ROS) gener-
ated in mitochondria can also impact photosynthesis by
inhibition of the respiratory electron transport chain.
Free radicals leave mitochondria and enter the chloro-
plast, where they cause oxidative damage to the photo-
synthetic apparatus and decrease photosynthesis activity
[139]. The phytotoxic effects of GLY on photosynthe-
sis activity in algae have been observed in several spe-
cies of green algae and diatoms, resulting in damage to
the photochemical efficiency of the PS II photochemical
system [140]. In studies testing the effects of a Roundup
GBH (0.28-6 mg 17}, the phytotoxicity of GLY on cyano-
bacterial and green algal species (M. aeruginosa, Nitella
microcarpa var. wrightii) was enhanced by the presence
of POEA [141] although increased cell density, chl-a con-
tent, photosynthetic activity was also observed on algae
species at lower concentrations [127], indicating a possi-
ble hormetic response that has enhanced stress effects on
the plant organism [142].
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The effects of GBH co-formulants have been inves-
tigated in several studies. The 72-h ECj, values for
POEA in P subcapitata ranged from 0.2 to 4.9 mg 1™
[30, 104, 143]. In contrast, the toxicity of alkyl polyglu-
cosides (APGs) (C,,_;,) was significantly higher (72-h
EC;,=11-46 mg 1™"). Significantly higher 72-h EC;, val-
ues of 1113—-1543 mg 1! were observed for APGs with
shorter carbon chains (Cg_;,) [144, 145], indicating corre-
lation between alkyl chain length and increased toxicity.

Effects on aquatic plants

The aquatic macrophyte community serves as a micro-
habitat for planktonic and periphytic communities, as
well as a food source for herbivorous organisms [146,
147]. Thus, observations that GLY can exert numerous
detrimental effects on the aquatic macrophyte commu-
nity leading to damage in food chain networks, is a seri-
ous aquatic ecotoxicological concern. The main results
of ecotoxicological testing on aquatic plants are summa-
rized in Table 3. In algal and duckweed growth inhibition
tests, the inhibitory effect of AMPA on D. subspicatus
growth was 1.5-times weaker than for a Roundup GBH.
The GBH caused 100% growth inhibition (1.15 mg 17%)
in the common duckweed (Lemna minor), even at much
lower concentrations compared to the ready-to-use con-
centration (18.38 mg 1™!). AMPA proved to be much
less toxic [148]. Furthermore, increased ascorbate per-
oxidase activity and polyamine levels were observed in
L. minor tissues after exposure to a GBH (Roundup Ultra
360 SL), although a concentration-dependent reduc-
tion was detected in the pigment content and biomass
of duckweeds (>360.5 mg 1! AI) [149]. Additionally, the
accumulation of GLY in tissues of L. minor exposed to
0.68 mg 1! GLY-IPA, resulted in decreased growth, yield
and photochemical activity of the PS II photochemi-
cal system. Moreover, inhibition of chl-a, -b, and carot-
enoid synthesis was also detected, while the peroxidase
and catalase activities were increased at 1.6-4.56 mg 1
GLY-IPA [150]. However, the inhibitory effects of a GBH
Taifun Forte were found to be temperature-dependent
on L. minor [151]. The inhibitory effect of AMPA was
also demonstrated on the growth of L. minor exposed to
AMPA (>35 pg 17") [152]. In addition, a reduced chloro-
phyll content (3050 ug 17') and an altered chlorophyll
and amino acid metabolism were detected [152].

In Salvinia molesta exposed to GLY and its metabolite
(>40 pg I"* GLY, >10 pg I™! AMPA), reduced photosyn-
thetic rates and pigment contents were observed [153]. In
contrast, malondialdehyde levels and enzyme activities
(catalase, ascorbate-peroxidase) were increased after GLY
and AMPA exposure. In combination, the toxic effects of
AMPA and GLY were enhanced. Additionally, the high
removal efficiency of S. molesta was also demonstrated
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for GLY and AMPA (up to 74.2% and 71.3%, respectively)
[153]. GLY (>0.05 mg I™!) caused growth inhibition in
the submerged macrophyte Vallisneria natans, while the
growth of Acorus calamus was impaired at the higher
GLY concentrations tested (>5 mg 17!) [116]. Expo-
sure to AMPA caused growth inhibition and increased
malonaldehyde levels only at the highest concentra-
tion tested (>50 mg ™). Compared to A. calamus, V.
natans was more sensitive to AMPA-induced oxidative
damage [116]. The combined effects of GLY and AMPA
were concentration dependent and species-specific on
plant growth and oxidative stress parameters [116]. In
the aquatic macrophyte Egeria densa, decreased pho-
tosynthetic rates and chl-a content were observed after
exposure to a Roundup GBH (0.28—6 mg 1™) and AMPA
(0.03 mg 17!), while dark respiration rates increased after
exposure [154].

Effects on aquatic invertebrates

The main effects of GLY and GBHs on aquatic inverte-
brates are presented below according to the classification
of animals based on phylogenetic systematics [155]. Thus,
we start with hydra, arthropods and rotifers (includ-
ing zooplankton species, crabs and insects), followed by
aquatic snails and mussels belonging to the phylum of
mollusks, and finally with the other specialized species
such as trematodes and Echinodermata.

Effects on hydra, arthropods and rotifers

Cnidarian species, including Hydra viridissima, are
increasingly used as sensitive test organisms in eco-
toxicological studies due to their small body size, simple
anatomy, and ease of culture maintenance [156—158].
Morphological alterations were detected in H. viridis-
sima exposed to GLY and the GBH Roundup Ready at a
concentration of 5.2 mg 17! (Al equivalent) [159]. After
exposure, a high recovery capacity was observed in
hydras exposed to GLY (95%). In contrast, no recovery of
hydras was observed after GBH treatment [159]. Adverse
effects on reproduction were indicated also after GBH
exposure [159].

Zooplankton in aquatic ecosystems includes plank-
tonic crustaceans and rotifers. This subchapter also
examines scientific results for crustaceans and insects
whose life cycle can be linked to aquatic environments
(Table 4). Planktonic crustaceans, such as species of the
genus Daphnia, which belong to the filter-feeding organ-
isms, play a crucial role in aquatic ecosystems and food
webs. Furthermore, due to their sensitivity to changes in
water quality, daphnids are an excellent indicator species
in aquatic ecotoxicology tests [160]. However, significant
differences in the sensitivity of different crustaceans are
occasionally observed. These differences in sensitivity
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can be observed in taxonomically related species such as
the common water flea (Daphnia pulex and Ceriodaph-
nia dubia) and the great water flea (D. magna), although
they have similar feeding strategies and lifestyles [79,
161]. In ecotoxicology tests of D. magna with GLY, sig-
nificant differences were found, with acute toxicity (ECs)
values ranging from 4.2 to 24 mg 1! [100, 162-165] and
on occasion reaching as high as 146-930 mg 17! [111,
166—168].

Similarly, reported EC;, values for GBHs exhibit sig-
nificant variability, ranging from 1.75 to 782 mg 1! [168—
171]. These observed differences in ECg, values can be
explained by variations in Al content, the presence of dif-
ferent co-formulants in GBHs tested, differing sensitiv-
ity between D. magna strains and different experimental
conditions such as pH, dissolved oxygen content, or tem-
perature. Several studies have demonstrated increased
toxicity of GBHs containing POEA as a co-formulant,
compared to toxicity observed with GLY alone [100, 172,
173]. However, one study found slightly lower acute tox-
icity of a GBH compared to GLY-IPA alone [174]. The
effects of Roundup on immobility and hydrolytic enzyme
activities proved to be temperature-dependent based on
acute toxicity testing on D. magna [175]. Exposure of D.
magna to GLY resulted in down-regulation of the Cyp4
gene (190 mg 17"), while expression of Cyp314 remained
unaffected, suggesting harmful effects on steroid and
fatty acid metabolism. Additionally, vitellogenin, which is
responsive to the estrogenic effect, was not affected [176].
GLY and GBH formulations caused a decrease in body
size and growth of D. magna juveniles even at the lowest
tested concentrations of GLY-IPA and a Roundup GBH
(0.05 mg AI I™!). Moreover, additional negative impacts
were detected on reproduction rates [174]. At higher
concentrations (>20 mg Al 1), GBHs impaired the sur-
vival of D. magna and Cyclops vicinus, with observed
morphological alterations in both test organisms [177].
The temperature-dependent toxicity of a Roundup GBH
on alkaline phosphatase activity was also demonstrated
in D. magna. Based on the observed results, alkaline
phosphatase activity whilst playing an important role
in digestion, proved to be an appropriate biomarker of
damage to D. magna [172, 178]. Multigenerational eco-
toxicology tests with a binary mixture of GLY and silver
nanoparticles did not clearly demonstrate interactions
between these substances [173]. However, the combined
chronic multigenerational effects related to reproductive
parameters (e.g., delay in the age at first brood) indicated
increased toxicity compared to GLY and silver nanoparti-
cles individually [173].

When evaluating the effects of the Sulfosato Touch-
down on 30 zooplankton taxa was undertaken, a reduc-
tion in species diversity was observed above 2.7 mg 17!
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[179]. Altered diversity, including a decrease in the pro-
portion of cladocerans and an increase in rotifers (Bdel-
loidea), was observed in all GLY treatment groups.
Additionally, treatment with this herbicide exhibited
a selective impact on zooplankton hatching dynamics,
including timing of first hatch and frequency of hatch
[179]. Indirect effects of GBH Glifosato Atanor (3.5 mg
AI I"") on zooplankton were shown with the signifi-
cant increase in the abundance of rotifer species Lecane
spp. [180]. The observed effects can be explained by the
improved food availability provided by the higher abun-
dance of picocyanobacterial and bacteria after exposure
[180]. Multi- and transgenerational effects of GLY have
been demonstrated in the estuarine rotifer Proales simi-
lis after exposure to GLY even at very low concentration
(1 pug 1Y) [181]. In another study, sublethal exposure to a
Roundup GBH resulted in a dose-dependent disruption
of molting and development, as well as carbohydrate and
energy metabolism in a saltwater crustacean, Artemia
franciscana [182]. A complete inhibition of hatching was
observed in GBH-exposed Artemia salina (144-288 pg
AI ml™!) [183]. In addition, altered early development
and increased catalase activity (>0.72 ug AI ml™!) were
also detected. The observed effects can be associated
with excessive ROS levels and indicate the possible tera-
togenicity of the Roundup formulation [183].

Based on the results of ecotoxicological testing of
POEA, the average 96-h EC;, value determined for
Daphnia species (D. magna and D. pulex) was found to
range from 0.1 to 3.8 mg I [111, 184]. When studying
the effects of GBHs, POEA was identified as the most
toxic component [185]. Adverse effects of non-ionic
APGs were demonstrated on D. magna in the concentra-
tion range of 2.5-5 mg 17! [186]. Additionally, increased
toxicity was observed with longer alkyl chain lengths of
APGs [145].

When determining the acute effects of a Roundup GBH
on the shrimp Caridina nilotica and its three life stages
(neonates, juveniles, adults), it was found that neonates
were more sensitive to the effects of the GBH at a much
lower concentration (average 96-h LC5,=2.5 mg AL 1™).
Behavioral abnormalities, such as slow, uncoordinated
and erratic movements were also observed at all life
stages [187]. Adverse effects of GLY (0.02 and 1 mg 17
and a GBH (Roundup UltraMax; 0.01 and 0.2 mg Al I,
were found on body weight gain, reabsorbed vitellogenic
oocytes, vitellogenin content in the ovary of an estua-
rine crab (Neohelice granulata). The inhibition of ovarian
protein synthesis was detected after the exposure to the
tested GBH (0.2 mg AI1™!), but GSI and HIS index were
not affected [188, 189]. Furthermore, the adverse effects
of a GBH on immune status, spermatophore morphology,
spermatogenesis and spermatozoa quality of the Chinese
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mitten crab (Eriocheir sinensis) were demonstrated [190,
191].

Low GLY concentrations were found to cause delayed
hatching of females and rapid hatching of males in
exposed midge larvae (Chironomus xanthus), showing
negative effects at environmentally relevant concentra-
tions (0.7 mg 1™!) on growth and development [192].
However, the analysis of macroinvertebrates (e.g., Chi-
ronomidae) did not show any effects on the diversity
and abundance of macroinvertebrates after exposure
to the GBH Roundup [193]. The toxicity of a Roundup
GBH was higher compared to the effects of the Al on the
growth rate, behavior and most physiological endpoints
(e.g., escape swimming speed, food intake, fat storage) of
the damselfly (Coenagrion pulchellum). However, some
negative effects (e.g., changes in survival, muscle mass,
sugar and total energy content) were observed only at
the higher concentrations tested (2 mg 1™* GLY). These
results confirm the negative effects of the POEA co-
formulant on mortality and fitness of C. pulchellum by
affecting population dynamics and predation. However,
based on the results obtained, the toxic effects of the
Roundup cannot be completely attributed to the pres-
ence of the surfactant [194].

Effects on mussels

Low mortality, and only few toxic effects of Roundup
Express GBH and POEA on juvenile oysters (Cras-
sostrea gigas) were observed at subchronic exposure
(35 days) at low concentrations (>0.1 pg 1) based on
different parameters (e.g., shell length) [195]. However,
GBHs, GLY and AMPA had no effects on embryo-lar-
val development in C. gigas in the concentration range
of 0.1-1000 pg 1! compared to controls. Above this
concentration range, a concentration dependence was
observed in the severity of the detected abnormalities.
Metamorphosis assays showed higher toxicity for GBHs
than for GLY and AMPA [196]. After the dietary expo-
sure to a GBH (Scenedesmus vacuolatus green algae
exposed to Glifosato Atanor at concentration of 6 mg Al
1I"! with the addition of 2.5% alkyl aryl polyglycol ether
surfactant, biochemical alterations were detected on
Limnoperna fortunei. A significant decrease in the car-
boxylesterases, while increased activity of GST and alka-
line phosphatase were demonstrated. Effects on several
enzyme activities (e.g., catalase, AChE, and superoxide
dismutase) or oxidative damage to proteins and lipids
were not proved [80]. GLY impaired acetylcholinesterase
(AChE) activity and hemocyte parameters in the mus-
sel Mytilus galloprovincialis due to damage to important
biological processes such as endoplasmic reticulum func-
tion, energy metabolism, cell signaling, and Ca®" home-
ostasis (>10 pg 17!, although no effects on antioxidant
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enzyme activity were observed [197, 198]. At very low
concentrations (0.1 pg 17*), GLY and AMPA elicited cyto-
protective responses in hemocytes from treated M. gal-
loprovincialis [199]. These observations appear to be due
to altered efflux activity of multi-xenobiotic resistance
(MXR) and altered expression of the Abcb gene encoding
an MXR-related ABC transporter P-glycoprotein. Simul-
taneous exposure to GLY and AMPA induced enhanced
responses in addition to the decreased efflux activity with
Abch down-regulation (at 1 pg 1™' GLY/AMPA expo-
sure) [199]. Inhibition of AChE was detected in the mus-
sel Perna perna after GLY exposure (IC;,=104.8 mg 17"
[200]. The studied mussel appeared to be much more
sensitive than zebrafish (Danio rerio) and the onesided
livebearer (Jenynsia multidentate) [200]. GLY and AMPA
exposures (100 pg 1™!) indicate changes in the physiologi-
cal homeostasis of M. galloprovincialis with the findings
suggesting that the tested compounds may damage the
animal’s microbiota. AMPA caused only a slight change
in the microbial community of the exposed mussels,
but substantial modifications were observed after expo-
sure to GLY and the mixture of GLY and AMPA [201].
A study of another POEA surfactant, Genamin T-200,
demonstrated high toxicity on C. gigas embryo larval
development (EC5,=262 pg 1) and metamorphosis
(EC5y=3,027 pg 171) [202]. The most important results of
the aquatic ecotoxicology tests on mussels are summa-
rized in Table 5.

Effects on aquatic snails

The acute toxicity of GLY was demonstrated in the inva-
sive snail Pomacea canaliculate, but only at high con-
centrations (96-h LC;,=175 mg 1"!) [203]. Long-term
exposure at sublethal concentrations (20 and 120 mg ™)
resulted in inhibition of food intake, changes in meta-
bolic profile (e.g., enhanced overall metabolic rate and
modified catabolism from protein to carbohydrate/lipid
mode), and impaired growth performance. In addition,
increased growth was observed at 2 mg 17! Cellular
responses in enzyme activities indicated increased toler-
ance of exposed snails by their defense system against the
harmful effects of oxidative stress induced by GLY [203].
After 21 days of exposure, the effects of GLY (200 pg 1)
on fatty acid composition and glutathione peroxidase
activity in freshwater gastropods (Lymnaea sp.), were
strongly dependent on temperature (20 °C and 25 °C).
In addition, increased glutathione-S-transferase (GST)
activity was observed in GLY-exposed snails, indicating
the essential role of GST in the detoxification processes
[204]. A Roundup GBH caused changes in mortality,
reproduction, and development of Lymnaea palustris
aquatic snails while acute steroid regulatory protein lev-
els decreased upon treatment with the GBH, as well as
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after chronic exposure to GLY (3.5 mg 1™!) and a GBH
(19.5 mg 1. Furthermore, lower testosterone and higher
or equal estradiol levels were observed in snails after GLY
exposure of 3.5 mg I”! compared to untreated controls
[205].

The co-formulant POEA in surfactant MON 0818,
which is added to many commercial GBH formulations,
did not significantly affect the viability of eggs of the
snail Planorbella pilsbryi up to 9.9 mg 17! [206]. How-
ever, juveniles (LC5,=4.0 mg 17') were more sensitive
than adults (LCy,=4.9-9.1 mg 17!), and egg laying was
inhibited by the co-formulant (EC5,=0.4-2.0 mg 1™%).
This inhibitory effect was restored in clean water after
the 96-h exposure up to 4.9 mg I™'. Additionally, vis-
ible damage to tentacles of adult snails was observed at
concentrations >2.7 mg 17! [206]. Based on the results,
environmentally relevant concentrations of GLY and sur-
factants (e.g., MON 0818) may pose a risk to populations
of aquatic snails (Table 6).

Effects on trematodes and Echinodermata

In the natural environment, the GBH Roundup may
affect the transmission dynamics and development of
trematodes (Echinostoma paraensei) whose life cycle
is associated with water courses [207]. In a study of the
developmental and metabolic effects of GLY, a GBH
(Roundup Power 2.0), and AMPA at environmentally rel-
evant concentrations (1-100 pg 17!) on larval sea urchin
(Paracentrotus lividus), the observed effects were highly
dependent on the type and the concentration of the
tested compounds according to the parameters measured
[208]. In general, GLY and AMPA showed similar levels
of toxicity to the sea urchin, while the GBH formulation
was less toxic than the GLY [208]. The main results of
ecotoxicological tests on trematode and Echinodermata
species are also listed in Table 6.

Effects on aquatic vertebrates

Similar to the adverse effects observed in aquatic inver-
tebrates, GLY and the various components in GBHs may
also negatively impact the health of aquatic vertebrates,
such as various reptiles, fish, and amphibian species. The
potential routes of exposure to aquatic contaminants
may be different for these species. However, the number
of ecotoxicological studies examining the effects of GLY
and GBHs on reptiles is small. In aquatic turtle species
(Trachemys scripta elegans and Mauremys leprosa) GBH
Clinic (30 mg AI I™!) significantly increased catalase and
superoxide dismutase (SOD) activities of the enzymes,
while reduced AChE activity was observed after the 96-h
exposure. Effects on lipid peroxidation were not dem-
onstrated [209]. In Pelodiscus sinensis turtles exposed to
GLY-isopropylammonium (0.02-20 mg 1™%), no effects

Page 20 of 62

were observed on growth or functional performance,
including food intake and swimming speed, or on liver
antioxidant responses (e.g., catalase and SOD enzyme
activity) and gut microbial diversity [210].

However, perturbations in hepatic metabolite profiles
were detected, mainly affecting amino acid metabolism
in exposed animals [210]. Exposure to a Roundup GBH
(11 or 21 mg I™') altered immune parameters and com-
plement system activity, as well as decreased white blood
cell numbers and negatively affected growth were indi-
cated in the broad-snouted caiman (Caiman latirostris),
while total protein content was increased in the exposed
animals [211, 212]. The main results of ecotoxicological
studies on reptiles are summarized in Table 7.

Effects on fish species

Various fish species living in different aquatic habitats are
highly exposed to chemical contaminants from industry.
Contact with xenobiotics (e.g., GLY) in water is unavoid-
able throughout all stages of development and their life
cycle. Moreover, fish species can absorb and concen-
trate various aquatic pollutants, which can result in food
safety risks for human consumers [213]. The effects on
fish observed during ecotoxicological tests are summa-
rized in Table 8. A 24-h exposure to a Roundup GBH
(10 mg 1™") resulted in decreased SOD and glutathione
peroxidase activity, while glutathione levels and the GST
activity increased in the liver of the streaked prochilod
Prochilodus lineatus, indicating oxidative stress [214].
ACHhE activity was inhibited in the brain after 96 h and in
muscle after 24 h of exposure. Therefore, acute exposure
to the Roundup impaired antioxidant defenses, leading
to the occurrence of lipid peroxidation [214]. Reduced
GST levels were observed in the South American cat-
fish (Rhamdia quelen) exposed to lower Roundup GBH
concentrations (> 0.45 mg 17!) [215]. During the recovery
period, increased GST activity was detected as a possi-
ble compensatory response, although catalase and SOD
activity decreased, indicating toxicity from the GBH.
Oxidative stress was detected during Roundup exposure
possibly caused by increased protein carbonyl content
and lipid peroxidation (>0.45 mg 17!) [215]. Increased
ROS levels and cell death were observed in zebrafish (D.
rerio) larvae exposed to Roundup Flex GBH (10 pg Al
ml™) for 4 h 30 min [216]. After 14 days of exposure to
GLY and a Roundup GBH at relatively low concentrations
(0.01, 0.5, and 10 mg a.e. GLY 17%), upregulation of the
antioxidant system was observed in brown trout (Salmo
trutta). Additionally, significant changes in the expres-
sion of transcripts encoding components of the antioxi-
dant system, a number of stress-response proteins, and
pro-apoptotic signaling molecules were observed even
at the lowest dose, consistent with a cellular response to
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Table 7 Effects of glyphosate and/or its formulated herbicide products on reptiles reported in the scientific literature since 2010

Test organism  Type of Tested concentrations Duration Tested endpoints Observed effects References
tested
compound
T.scripta elegans, ~ Clinic 30mg ! 12.and 96 ha Enzyme activities, lipid per- Increased catalase and super- [209]
Mauremys oxidation oxide dismutase activity,
leprosa decreased AChEP activity,
no effects on lipid peroxida-
tion (96 h)
P sinensis GLY-IPA® 0-20 mg [~ 30 ¢ Growth, indicators of func- No significant effects [210]
tional performance, gut on growth, functional
microbial diversity, liver anti-  performance (e.g., food
oxidant responses, metabolite intake), gut microbiota, liver
profiles antioxidant responses (e.g.,
SOD® and CAT activities),
affected hepatic metabolite
profiles (=0.02 mg ™)
C. latirostris Roundup 1or21mgl™ 2 months Immune system and growth  Decreased white blood cell [211]
numbers (21 mg I, higher
total protein concentration
(11 mg 1™
C. latirostris Roundup 110or21 mg [ 70d White blood cell, com- Reduced complement [212]

plement system activity,
immune response

system activity, suppres-
sive effects on the immune

response

2 Hour, Pacetylcholinesterase, “GLY-isopropylammonium salt, Yday, ®superoxide dismutase, ‘catalase

oxidative stress as the most significant mechanism of tox-
icity of both GLY and its Roundup formulation [84]. The
effects of GLY (2.5 and 5 mg 17! for 120 h) on oxidative
stress enzyme activity and malondialdehyde concentra-
tion as a marker of lipid peroxidation were detected in
goldfish (Carassius auratus) [217]. In addition, the effects
on various parameters of oxidative stress and lipid perox-
idation (e.g., level of thiobarbituric acid, activity of GST
and SOD) were age-specific in killifish (Cynopoecilus sp.)
exposed to Roundup Original (65-260 ug AI1™) [218].

A slight decrease in the number of erythrocytes, as well
as hemoglobin and hematocrit levels were also observed
compared to controls, indicating moderate anemia in
the exposed goldfish [217]. In guppy (Poecilia reticulata)
gill erythrocyte cells exposed to different concentrations
of Roundup Transorb GBH (0.91-3.66 mg 1™!) for 24 h,
a concentration-dependent increase in the number of
damaged cells was observed, indicating mutagenic and
genotoxic effects [219]. Genotoxic effects of another
GBH (Roundup Full II—2.75 mg I™!) were detected in
the blood, liver and gill cells of exposed pacu fish (Piar-
atus mesopotamicus) [220]. The genotoxic potential of
GLY, Roundup, and POEA was detected in blood cells
of the exposed European eel (Anguilla anguilla) [221].
Altered hematological and biochemical parameters (e.g.,
decreased level of alkaline phosphatase, hemoglobin and
hematocrit value, increased level of white blood cells)
were also observed in Labeo rohita after chronic expo-
sure to GBH Roundup (0.63-2.06 mg 17!) [222].

Lower heart rates were observed in treated D. rerio
embryos (100 and 1000 pg 1I™! of GLY at 48 h), indicating
possible cardiotoxicity [223]. Altered transcriptome pro-
files (30 differentially expressed genes involved in meta-
bolic processes, oocyte maturation, and nervous system
development) were also observed in these embryos at
the higher GLY concentration after 96 h [223]. The car-
diovascular toxicity of GLY was also demonstrated in D.
rerio embryos exposed to 30—120 pg ml~* GLY up to 72 h
after fertilization [224]. Cardiac malformations, includ-
ing enlarged chambers, rhythm alterations, and thinned
ventricular walls, as well as a defective intersegmental
vasculature indicative of damaged angiogenesis, were
observed in the exposed embryos. The cardiovascular
effects of GLY might be related to apoptosis, as apoptosis
occurs in the cardiac and vascular regions. Additionally,
altered development, hatching abnormalities, mortality,
and decreased body length of exposed embryos were also
observed [224]. Exposure to GLY and Roundup Original
DI (250-1000 pg 1!) caused decreased heart rate and
decreased activity of GST and AChE in exposed D. rerio
embryos [225]. Effects on behavior and various biochem-
ical parameters (e.g., total antioxidant capacity, lipid per-
oxidation, ROS level) were not observed. A higher rate of
malformations (e.g., pericardial edema, yolk sac edema,
and curvature of the spine) was observed in GBH-
exposed embryos [225].

When tambaqui (Colossoma wmacropomum) were
exposed to Roundup GBH (10 and 15 mg Al 17!), altered
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biotransformation processes were observed in the
gills [226]. In addition, ROS were produced in the liver
and increased DNA damage was observed in red blood
cells. Furthermore, inhibition of AChE activity was also
observed in the exposed fish brain [226]. Concentration-
dependent DNA damage and increased levels of ROS and
lipid peroxidation were observed in the spotted snake-
head (Channa punctatus) exposed to sublethal GLY con-
centrations (Roundup 3.25-6.51 mg AI1™*). However, the
extent of lipid peroxidation and DNA damage was higher
in gills than in blood cells [227].

Sex-specific disruption of the hepatic metabolism
in zebrafish (D. rerio) was detected after the longer-
term exposure (28 days) at a lower GLY concentration
(700 pg 17"). In females, decreased uridine 5’-monophos-
phate content was observed in the pyrimidine metabolic
pathway, as well as the reduction of purine intermediates
was indicated. In addition, decreased aminoadipic acid in
the lysine degradation pathway observed in males [228].
GLY exposure also resulted in increased stress responses
in both sexes, namely an increased stress-inflammatory
response in females and an impaired oxidative stress
response in males [228]. Exposure to GLY (35 mg 1)
caused decreased triiodothyronine (T3)/thyroxine (T4)
ratios in exposed D. rerio embryos (120 h post-fertiliza-
tion) [229]. Moreover, abnormal expression patterns of
genes related to the hypothalamic-pituitary-thyroid and
growth hormone/insulin-like growth factor axes were
observed. As a result, developmental toxicity was dem-
onstrated in these fish (e.g., reduced heartbeats, prema-
ture hatching, shortened body, swim bladder deficiency,
pericardial and yolk sac edema) (>7 mg 17!). No oxida-
tive stress or significant malformations were detected at
the lowest concentration, but hormonal changes were
observed. GLY at 7 and 35 mg I caused accumula-
tion of ROS in larvae [229]. In vivo, the estrogenicity of
AMPA, GLY and GBHs was demonstated in an estrogen-
sensitive, transgenic zebrafish line after 120 h of exposure
(0.35-2.8 mg 17") [230]. The acute toxicity of AMPA was
not detected, while the toxicity of GBHs was higher com-
pared to GLY. In addition, sublethal anomalies and mal-
formations were observed in the GBH-exposed embryos
[230].

Oxidative DNA damage and production of ROS was
observed in juvenile common carp (Cyprinus carpio)
(>5 mg I™Y). Liver inflammation in vivo, accompanied
by oxidative damage and altered physical intestinal bar-
rier, was observed in carp exposed to GLY concentra-
tions (5-15 mg 17!) for 30 days. Moreover, at 15 mg 1™
GLY, inhibition of AChE activity in the brain of the fish
was observed, and decreased swimming speed and dis-
tance, as well as average acceleration were demonstrated
[231]. In addition, also oxidative DNA damage, ROS
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production, mitochondrial dysfunction, and reduced cell
viability were detected on the tested fish cell line (0.65
and 3.35 mg 17!) [231]. In another study, an increased
frequency of nuclear morphological abnormalities and
micronuclei formation were observed in D. rerio exposed
to GLY (1, 65, and 5000 pg I-1 for 72 h) [232].

After the common carp (C. carpio) and zebrafish (D.
rerio) were exposed to GLY at various concentrations
(0.005-50 mg 17') at early life stages, a delay in hatch-
ing was observed, especially at the highest concentra-
tion after 72, 96, and 120 h post fertilization. In contrast,
hatching stimulation was observed in D. rerio embryos
exposed to GLY (96 h post fertilization). Early life stages
of C. carpio were more sensitive, with numerous malfor-
mations and delayed development compared to D. rerio.
GLY at lower concentrations (0.005 mg 17!) resulted in
significant changes in both fish species, including altered
mortality and occurrence of malformations, possibly
reducing biodiversity [81]. Long-term exposure to low
concentrations of GLY (65 pg 17! for 15 days) showed
adverse effects on reproduction in D. rerio, with a sig-
nificant increase in oocyte diameter associated with the
appearance of concentric membranes resembling myelin-
like structures in the ultrastructure of ovaries correlating
with the outer membranes of mitochondria and with yolk
granules [233]. Low concentrations of GLY and AMPA
(>10 ng ml™") caused developmental toxicity in zebrafish
embryos (exposure from 2 to 74 h post-fertilization for
72 h), with concentration-dependent heart rate elevation
and arrhythmia observed [234]. In exposed embryos, dis-
turbances in heart development were observed, possibly
related to altered transcription levels of genes involved in
development and apoptosis. Pericardial edema and bone
deformities were also observed as a possible consequence
of inhibition of Na*/K*-ATPase and Ca®*-ATPase after
GLY and AMPA exposure (>1 ng ml™) [234].

Reproduction of D. rerio was affected by 21-day expo-
sure to GLY and GBH Roundup, while GLY (10 mg I™%)
caused decreased egg production in breeding colonies,
although fertilization rate was not affected. Moreover,
both Roundup and GLY (10 mg 17!) increased mortality
and premature hatching of early-stage embryos [235]. In
the one-sided livebearer (/. multidentata) concentration-
dependent histological changes were observed in the gills
and liver after the exposure to Roundup (>0.5 mg17!). In
addition, the number of copulations and mating success
decreased in male fish [236]. Adverse effects of GLY (5
and 10 mg 1™!) on sperm quality of D. rerio were observed
after 24 and 96-h exposure, including damage to sperm
membranes and DNA. Moreover, reduced mitochondrial
function and sperm motility were detected, suggesting
reduced fertility (>5 mg 17!) [237]. In D. rerio embryos
exposed to GBH (1-100 mg AI 17!) for 24 to 96 h, a
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dose-dependent inhibition of carbonic anhydrase activ-
ity was observed, which was attributed to the production
of ROS, especially in branchial regions, caused by cellular
apoptosis [238].

Various types of malformations were also observed in
a dose-dependent manner, including pericardial edema,
spinal curvature, yolk sac edema, and body malforma-
tion (>1 mg AI 1™!) [238]. Furthermore, a negative effect
of Roundup GBH (78 pg AI1™!) on the concentration of
17B-estradiol and reduced glutathione concentration
was observed in the liver of male delta smelts (Hypome-
sus transpacificus) (700 pg AI 1™!) [239]. Decreased body
weight, altered morphology (24 h post-fertilization),
survival rate, growth, and behavioral parameters were
demonstrated in Clarias gariepinus exposed to the
GBH Forceup (0-1 mg I7!) at different developmental
stages (e.g., gametes, postfryer, juvenile) [240]. Moreo-
ver, increased levels of malondialdehyde were detected
at the higher GBH concentrations indicating an oxida-
tive stress response after GBH exposure. Decreased levels
of reduced glutathione and SOD activity were found in
exposed post-fingerlings and juveniles compared to con-
trols. Histological analysis revealed necrosis in the gills,
cardiac myocytes, brain, and liver of exposed fish [240].

After daily exposure of the rainbow trout (Oncorhyn-
chus mykiss) to 1 pg 1™ GLY and GBHs (Roundup Inno-
vert and Viaglif Jardin) for 10 months during spawning,
no effects on average body weight, relative fecundity,
and fertility were observed [241]. However, fish exposed
to the GBH Viaglif Jardin two months before spawn-
ing showed a 70% decrease in the proportion of mac-
rophages and a 35% decrease in phagocytic activity. One
month after spawning, a lower tumor necrosis factor-a
level was observed, but the difference was not significant
compared to the control [241]. No effects on locomo-
tor activity, somatic indexes, AChE and catalase activity
were demonstrated in adult females of the ten spotted
live-bearer (Cnesterodon decemmaculatus) exposed
to GBH Roundup Max (0.2 and 2 mg 17%) for 6 weeks.
However, the activity of GST in liver, reduced aspartate
aminotransferase, and alanine aminotransferase were sig-
nificantly affected in the exposed fish [242]. Additionally,
GLY at a concentration of 1 mg 1! acted as a significant
AChE inhibitor in C. decemmaculatus [243].

The inhibitory effect of a Roundup GBH (0.5-
10.0 mg 17! for 96 h) on AChE activity was also detected
in the brain and muscle of exposed common carp (C. car-
pio), although AChE activity increased after the recovery
period. Moreover, increased levels of thiobarbituric acid
reactive species (TBARS) were measured in the brain,
indicating oxidative stress [244]. Increased TBARS levels
were also found in the silver catfish (R. quelen) exposed
to different GBHs (e.g., Orium, Roundup Original, and
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Biocarb) at concentrations of 2.5 and 5.0 mg 17! for
96 h. However, the amount of catalase produced in the
liver decreased in all treatments [245]. A sex- and tis-
sue-specific histopathological response was observed in
the gills and liver of guppies (P reticulata) exposed to
GLY (35 mg I"!) and AMPA (82 mg 17!) for 96 h [246].
Male fish showed more frequent hepatic inflammatory
changes and a higher increase in the area of hepatocyte
vacuoles compared to female fish exposed to GLY and
its metabolite. Male guppies exhibited higher sensitiv-
ity than females, particularly in the presence of AMPA
[246]. In the hybrid fish surubim (crossbred between
two Neotropical catfish species, pintado, Pseudoplaty-
stoma corruscans X cachara, P reticulatum), exposure
to the GBH Roundup Original (>2.25 mg 17!) for 96 h
resulted in reduced plasma glucose levels but increased
levels in the liver, while lactate levels increased in both
plasma and liver and decreased in muscles [247]. In addi-
tion to the concentration-dependent and tissue-specific
effects of the GBH, plasma cholesterol concentration
decreased at all concentrations tested. Moreover, altered
behavioral parameters such as ventilatory frequency and
swimming activity were observed at higher concentration
(>2.25 mg ™) [247].

Exposure to GLY and a Roundup GBH (0.01-0.5 mg Al
171), resulted in altered morphology and behavior of D.
rerio even at the lowest concentration tested after a 96-h
exposure [248]. Adult fish showed reduced exploratory
(>0.065 mg Al 1) and aggressive behavior (>0.01 mg
AI 1), In the exposed larvae, altered exploratory and
aversive behavior were also observed (>0.01 mg AI I™%).
Impaired memory was observed in adult fish exposed
to Roundup (0.5 mg AI 171), and exposure to GLY
(0.5 mg 1I™1) resulted in reduced ocular distance in larvae
[248]. In C. carpio, significant differences were found in
the swimming behavior of fish treated with GLY (50, 100,
and 150 mg 17%), along with additional clinical signs such
as increased movement of the operculum and darkening
of the skin. Hyperplasia, hypertrophy, and hyperemia of
the gills were also observed [249].

After a 7-week exposure to a range of GLY concen-
tration (25-150 mg 17'), crossbred red tilapia (Oreo-
chromis niloticus X Oreochromis mossambicus) showed
differences in growth pattern, hepato-somatic index,
and gonado-somatic index with decreased body weight
even at the lowest concentration tested [250]. Time-
dependent histopathological effects were observed in
the gills of guppies exposed to a GBH (1.82 mg AI 1),
with various epithelial and muscle cell types showing
progressive, regressive, and vascular disorders [251]. In
C. carpio exposed to GLY (5 and 15 mg 17%) for 60 days,
a statistically significant decrease mRNA expression of
tight-junction genes and inhibition of AChE activity was



Klatyik et al. Environmental Sciences Europe (2024) 36:22

observed at the higher concentration [252]. In addition,
the combination of GLY (15 mg 1!) and polyethylene
microplastics (4.5 mg 17!) led to the inhibition of free-
swimming behavior of carp [252]. Exposure of tilapia (O.
niloticus) to GLY (2 mg 17!) resulted in dramatic changes
in gene expressions, with 94 up-regulated and 131 down-
regulated genes [253]. Long-term effects of GLY on 21
proteins related to liver metabolic function were also
observed, indicating a redox imbalance and dysregulation
of metabolism in exposed fish [253]. In an in vitro 3D
hepatocyte-kidney co-culture model, GLY (84.5 mg 17")
affected lipid metabolism in Atlantic salmon (Salmo
salar) hepatocytes and kidney cells after a 48-h exposure,
leading to an increased cholesterol level and down-reg-
ulation of clusterin, which may affect the stability of the
kidney cell membrane [254].

Mortality, hatch success, development, and ROS pro-
duction were not affected by GLY and AMPA (neither
individually nor in combination) in exposed D. rerio
embryos 1-larvae 7 days after fertilization compared to
controls [255]. However, the activity of tested enzymes
(e.g., SOD) was altered in a concentration- and a com-
pound-specific manner. Hyperactivity was detected in
fish treated with GLY but not AMPA or mixture [255].
Nile tilapia (O. niloticus) exposed to GLY (0.6 mg 17}
for 4 weeks indicated immunosuppression, an oxida-
tive stress response, as well as liver and kidney dysfunc-
tion, as indicated by increased levels of glucose, cortisol,
and enzyme activities (aspartate aminotransferase and
alanine aminotransferase) in gills and other tissue
samples [256]. The use of ginger in the feed showed a
protective role by enhancing antioxidant and immuno-
logical responses in the exposed fish [256]. GLY (1, 5, and
10 mg 17'), affected the energy metabolism and feeding
behavior of D. rerio larvae leading to increased mortality
[257]. The dynamics between zooplankton and fish larvae
were severely affected by GLY, resulting in reduced sur-
vival and feeding rates. GLY was also found to bioaccu-
mulate in zooplankton species, with levels up to 6.26% of
the total weight of rotifers [257].

In juvenile P lineatus, exposure to the GBH co-for-
mulant POEA (0.15, 0.75, and 1.5 mg 17') resulted in
increased plasma lactate levels and decreased hepatic
catalase activity, red blood cell counts and hemoglobin
content [258]. Additional effects included DNA dam-
age, lipid peroxidation and hemolysis but with hemato-
crit levels not affected [258]. POEA (9.3 and 18.6 pg 1)
was found to induce genotoxic effects in the European
eel (A. anguilla) causing higher levels of DNA damage
compared to GLY and a Roundup GBH. There was also
a synergistic interaction between POEA and GLY in pro-
moting non-specific DNA damage [221]. While no acute
toxic effects of GLY and AMPA were observed on D. rerio
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embryos, significant lethal effects were detected after
exposure to the GBH Atanor 48 and POEA. All tested
compounds were found to be genotoxic based on Comet
assays performed on zebrafish larval cells and rainbow
trout gonad-2 (RTG-2) cells. Specifically, POEA induced
DNA damage in RTG-2 cells in vivo, implying that it has
direct genotoxic properties [259]. The different aquatic
ecotoxicological studies demonstrated wide range of
the possible side effects of GBHs and their components.
The detected effects were indicated even at concentra-
tions lower than environmentally relevant GLY levels
(>0.01 mg 1™!). However, in several cases the effects are
only seen at much higher concentrations. Based on the
results, fish proved to be an excellent test organism for
many endpoints such as DNA damage, oxidative stress,
or the immune response (Table 8).

Effects on amphibians

Several studies have shown that GBHs at concentrations
present and measured in the environment have adverse
effects on amphibians (Table 9). The direct toxicity of
GLY is often associated with higher doses or possibly the
presence of GBH co-formulants. Lower concentrations of
GLY have effects on tadpole development and behavior.
The effects on amphibians are highly depend on the type
and composition of GBHs and the sensitivity of different
taxa and life stages. However, it is very difficult to deter-
mine applicable and valid environmental concentrations
of GLY that occur in and affect amphibian habitats. Fur-
thermore, little is known about the environmental con-
centrations of co-formulants in GBHs [260].

POEA, which has been banned as a co-formulant in
GBHs in the EU since 2016 but is still widely used in
the USA, is also toxic to the aquatic environment and
amphibians due to its ability to disrupt membrane trans-
port and act as a narcotic [261]. The toxic effects of GBHs
on amphibians are often much higher than the toxicity of
GLY alone. The toxicity of GLY and GBHs to amphibians
and reptiles was also considered in EFSA’s official scien-
tific opinion on the risk assessment of commercial pes-
ticide formulations [262]. Amphibians are a very specific
group of animals that may be exposed to the effects of
GLY and its commercial formulations in both aquatic and
terrestrial habitats at different life stages, with amphibian
reproduction generally dependent on and associated with
water.

Chronic exposure to the GBH VisionMax (0.021-
2.9 mg AI1™") decreased the number of wood frog (Litho-
bates sylvaticus) tadpoles that reached the metamorphic
peak under laboratory conditions [263]. In addition, a
concentration-dependent increase in thyroid hormone
receptor [ was observed in the brain of exposed tadpoles
[263]. Not only the GBH Roundup Ultramax (>0.37 mg
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a.e. GLY 1Y), but also GLY (>15 mg 1"!) caused liver
damage in neotropical frog (Leptodactylus latrans) tad-
poles at concentrations frequently found in the environ-
ment [82]. Cytotoxic effects of a GBH mixture (Roundup
SL and surfactant Cosmoflux 411F) have been demon-
strated in various in vitro (at concentrations from 95 pg
a.e. GLY ml™?) and in in vivo (at application rates above
5.4 ug a.e. GLY cm™) tests on Antilles coqui Eleuthero-
dactylus johnstonei erythrocytes with a dose-dependent
induction of DNA breaks [264]. Exposure to a sublethal
concentration of GLY (1 mg I™!) and GBHs (Roundup
Original and Roundup Transorb at 1 mg a.e. GLY 1™}
caused skin changes and altered respiratory function in
bullfrog (Lithobates catesbeianus) tadpoles [265]. Dif-
ferences can be observed in the effects of the GBH for-
mulations compared to the effects of GLY alone, and
even differences can be observed in the toxicity of the
GBHs [265]. In the African clawed frog (Xenopus laevis),
severe adverse effects on melanosome aggregation were
observed at low concentrations (116.4 mg 17!) of GLY-
IPA compared to treatment with a Roundup GBH [266].
The effects of GLY were pH dependent, in contrast to the
effects of the formulation. Roundup affected the mor-
phology, cytoskeletal integrity, and intracellular transport
of melanosomes in the exposed animals [266]. A study
conducted on the common toad (Bufo bufo) exposed to
a GBH (Roundup LB Plus at 0.5, 1.0, or 1.5 mg a.e. GLY
I"1) at two different temperatures (15 °C or 20 °C) and
life stages (eggs or tadpoles) found that eggs were more
sensitive compared to tadpoles [267]. More pronounced
toxicity of GBH, particularly on egg development, was
observed at the lower temperature which may be due to
interactive effects of the factors tested. Exposure of eggs
to GBH resulted in an average 31% increase in tail, body,
and total length compared to controls. Effects on mor-
tality, development, or morphology were not observed
in the exposed tadpoles [267]. The effects of the GBH
Roundup PowerFlex (1.5-4 mg Al I!) were studied on
the larval development of B. bufo exposed in different
life stages (eggs or tadpoles) were studied at two differ-
ent temperatures (15 °C and 20 °C). Exposure of eggs
resulted in significantly increased tail and body length,
but only at the lower test temperature [115]. No effects
were observed on mortality, body weight, and condi-
tion of the exposed tadpoles. Nevertheless, significant
interactions between GBH and temperature on tadpole
developement, larval tail length, body length and width
were observed [115]. Additionally, strong adverse effects
of AMPA at early developmental stages (0.4 ug 1™!) were
detected toads [268]. Moreover, altered hatchling mor-
phology, increased embryonic mortality and longer
development duration in Bufo spinosus were observed
following exposure to AMPA (0.07-0.39 pg 1™%) [269].
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Roundup Original MAX (with POEA as a co-formu-
lant) resulted in morphological changes in tadpoles of
Northern leopard frog (Lithobates pipiens), wood frog (L.
sylvaticus), and American toad (Bufo americanus) [270].
Frog tadpoles exhibited relatively deeper tails, and the
presence of predators reduced the mortality observed in
the presence of Roundup Original MAX because the her-
bicide induced antipredator morphology [270].

Exposure to pure GLY (100-0000 pg g~') caused mor-
phological changes in the liver of the oven frog (Lepto-
dactylus latinasus) [271]. GLY increased the melanin
area in liver melanomacrophages, altered the presence of
hepatic catabolism pigments into melanomacrophages,
and also caused abnormalities of blood erythrocyte
nuclei [271]. In addition to lethal effects, shorter body
length and lower body weight were observed in tadpoles
of native South American frogs (Physalaemus cuvieri
and P. gracilis) exposed to the GBH Roundup Original
DI (>500 pg a.e. GLY 17!) [272]. Growth and develop-
ment of L. latrans were affected by GLY (3—300 mg 1™%)
and its formulation a Roundup GBH (0.0007-9.62 mg a.e.
GLY 17Y). Oral abnormalities and edema were observed
after exposure to both substances, while swimming activ-
ity was altered only by Roundup treatment at the ear-
lier developmental stage of tadpoles [273]. At earlier life
stages of tadpole development, X. laevis showed higher
sensitivity to the toxic effects of GBHs, such as Roundup
formulations, with the pre-metamorphic stage being
the most sensitive [274]. GLY had no developmental or
lethal effects on X. laevis embryos and tadpoles up to
500 mg 17!, whereas the GBH Roundup Star adversely
affected embryos and tadpoles even at much lower con-
centrations (>31 mg AI1™!) [275]. Exposure to sublethal
concentrations of the GBH Roundup LB Plus resulted in
decreased body length and mobility of X. laevis larvae
(>97 mg 1™1) [276]. This GBH also impacted heart devel-
opment, including decreased heart rate and atrium size
(>97 mg 1™!). Additionally, smaller eyes, cranial carti-
lages, brains, and shorter cranial nerves were observed
after treatment (>121.5 mg 17!) [276]. A significant
decrease in body mass of X. laevis metamorphs was
observed after exposure to GBHs (Kilo Max and Enviro).
Kilo Max (280 mg 17!) altered the sex ratio of exposed
frogs (68:32—F:M) compared to controls (50:50). Repro-
ductive malformations, such as translucence, mixed sex,
and aplasia, were also observed [277].

Lethal and genotoxic effects of Roundup were
observed in the South Asian frog species Euflictis
cyanophlyctis, with observed effects increasing in the
presence of predation stress [278]. Sublethal and tera-
togenic effects of the GBH Roundup Power 2.0 were
observed in embryos of X. laevis, while a dose-depend-
ent abnormal phenotype, including microphthalmia
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craniofacial alterations, arrow eyes, and forebrain
regionalization defects, was induced after treatment,
which can be explained by GLY penetration facilitated
by the surfactant co-formulants (1-25 mg a.e. GLY 1™})
[279]. Additionally, cardiac malformations were indi-
cated after GLY exposure (>30 mg 17!) [279]. Minor
differences in the sensitivity of the tropical frog species
studied (Hypsiboas pardalis and Physalaemus cuvieri)
were observed in GLY toxicity tests, as indicated by the
96-h LCs, values (106 and 115 mg 1! for P. cuvieri and
H. pardalis, respectively) [280]. A lower concentration
of the GBH Roundup Original (>0.28 mg AI1™}) signif-
icantly increased DNA damage in D. minutus tadpoles
[281]. Exposure to the GBH Glyphogan Classic (2 and
6.5 mg a.e. GLY 1™!) caused behavioral changes in tad-
poles of the agile frog Rana dalmatina [282]. At higher
concentrations, reduced tadpole activity was observed
with more tadpoles hiding. At the lower concentration
tested, the vertical position of the tadpoles was closer
to the water surface than in controls. In addition, some
of the observed behavioral changes resembled the
movements induced by the presence of predators, such
as dragonfly larvae [282]. The effects of various GBHs
(including Roundup Ultra-Max, Infosato, Glifoglex, and
C-K Yuyos) on enzymatic parameters (such as reduced
activity of AChE, carboxylesterase, GST, and butyryl-
cholinesterase), were demonstrated in tadpoles of
Rhinella arenarum [283]. Tadpoles of B. bufo exposed
to Glyphogan Classic GBH (4 mg a.e. GLY 1%) through-
out larval development showed a higher amount of
bufadienolides during metamorphosis compared to the
control group [284]. Wood frog (L. sylvaticus) larvae
exposed to the GBH Roundup WeatherMax (0.21 and
2.8 mg a.e. GLY I™') had larger larvae, but no signifi-
cant effects on larval development were observed [285].
Exposure to a Roundup Ultra-Max GBH (20 mg 17%) did
not resulted in increased induction of DNA damage,
oxidative stress or neurotoxicity. In addition, enzyme
activities (e.g., butyrylcholinesteras, GST, and carbox-
ylesterase activities) were not altered either. However,
an increased heterophil L-lymphocyte (H/L) ratio in
peripheral blood was detected indicating immunologi-
cal depression in R. arenarum [208].

Based on the results within an artificial pond meso-
cosm, the effects of the GBH GLY-4 Plus on survival,
body size, and cellular immune response of spotted sala-
manders (Ambystoma maculatum) were strongly influ-
enced by the applied UV-B light regimes (moderate or
low) [286]. In larval salamanders (Eurycea wilderae)
exposed to GBHs such as Roundup, shorter and more
frequent movements were observed at higher GLY con-
centrations, while GLY-induced effects were inconsist-
ently affected by water temperature [287].
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Genotoxic, mutagenic, and histopathological hepatic
effects of POEA and GLY were observed in lesser
treefrog (D. minutus) tadpoles [288]. More genomic
damage (174%) was observed in POEA-exposed tadpoles
at all concentrations (1.25-10 pg 1) compared to con-
trols. Additionally, up to a sevenfold increase in micro-
nuclei was recorded on average at 5 pg 17! POEA. All
individuals exposed to 10 ug I™' POEA died. GLY expo-
sure increased DNA damage by 165% at higher concen-
trations (260 and 520 pg 17!) and also gave rise to more
micronuclei (up to sixfold) at 520 pg 1! [288]. The mix-
ture of the GBH Roundup Active and the surfactant
Cosmo-Flux 411F caused concentration-dependent sub-
lethal effects on the body size of tadpoles (e.g., Rhinella
humboldti, Engystomops pustulosus, Hypsiboas crepitans)
[289]. However, significant effects on embryonic develop-
ment were observed only on R. humboldti. It was noted
that embryos appeared to be significantly more toler-
ant compared to tadpoles, which may be explained by
the exclusion of the chemical compounds of the embry-
onic membranes and the absence of surfactant-sensitive
organs, such as the gills [289]. Alterations of swimming
performance were not observed in the investigated
microcosms [289]. Exposure to surfactant MON 0818
(POEA) resulted in 96-h LC;, values ranging from 0.68
to 1.32 mg 1! in the North American anuran species
(e.g., Rana pipiens, Rana clamitans, and Hyla chrysos-
celis), indicating differences in the sensitivity of anuran
species to this GBH co-formulant [290]. Most of the pre-
sented studies highlight that co-formulants are the main
cause of high-level toxicity of pesticide formulations
to amphibians. Similarly, in acute toxicity testing on R.
dalmatina and B. bufo tadpoles, the mortality and body
mass were not affected by GLY [283]. However, in the
presence of the POEA, higher mortality was observed in
both species with high toxicity of POEA alone was also
demonstrated [291]. The results of the ecotoxicological
studies on amphibians indicated several alterations in the
physiological, morphological and metabolic parameters.
Several effects were detected even at environmentally rel-
evant GLY concentrations, demonstrating the particular
vulnerability of amphibians (Table 9).

Combined effects between glyphosate and other
environmental pollutants

The various chemical compounds (e.g., pesticide Als,
formulation agents, pharmaceutical residues) present
in the different environmental matrices in all likelihood
will come into contact with each other. GLY and its
metabolites (e.g., AMPA) will coexist in the aquatic envi-
ronments with the other aquatic pollutants. Therefore,
identifying and evaluating the potential combined effects
of these various pollutants is essential to conducting a
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comprehensive ERA for commercial pesticide formula-
tions, including GBHs. The presented combined effects
between GLY and other environmental pollutants are
summarized in Tables 10 and 11.

Combined effects with other Als, co-formulants, and other
aquatic pollutants

The concern about ecotoxicological consequences and
thus adverse effects of pesticide residues stem from pos-
sible additive or synergistic effects of combinations of
various compounds of agricultural (and other) origin.
Multi-and transgenerational synergistic effects of GLY
and chlorpyrifos were observed in the estuarine rotifer P
similis exposed to the mixture of tested Als at environ-
mentally relevant concentrations [181]. Reduced growth
was observed in generations FO to F6, but the transgen-
erational effects were eliminated in F5, indicating a
slight recovery and population resilience to pollution
[181]. Simultaneous exposure of crayfish (Pontastacus
leptodactylus) to the insecticide chlorpyrifos and GLY
for 21 days resulted in synergic effects with an increase
in  glutamic-oxaloacetic-transaminase activity and
total antioxidant content, while y-glutamyltransferase
(GGT) activity decreased whilst exposure to GLY alone
increased GGT activity in P leptodactylus [292]. The
potential adverse effects of GLY (3.5 mg 1) and chlorpy-
rifos (25 pg 17!) were assessed individually and in combi-
nation on common carp (C. carpio) over 21 days [293]. In
addition to induced accumulation of malondialdehyde in
the brain, decreased enzyme activities (e.g., AChE, cata-
lase, GST) were observed after exposure to the test sub-
stances individually. In combination, the impact on most
parameters measured were enhanced over that observed
for the individual compounds suggesting that exposure
to the investigated Als both individually and in combina-
tion, may lead to oxidative stress and lipid peroxidation
in common carp [293]. In addition, changes in the tran-
scriptome were also detected in fish brains after treat-
ment with GLY and chlorpyrifos in fish brains but again
enhanced with the mixture of the two [293]. A synergistic
effect of a mixture of the GBH Credit (50.0-100.0 mg 1)
and the dicamba-based commercial herbicide formula-
tion Banvel (96.0-720.0 mg 17!) was demonstrated in the
induction of primary DNA breaks in circulating blood
cells of late-stage R. arenarum larvae [294]. Exposure to a
higher concentration of the combined herbicides caused
a significant increase in genetic damage index (GDI)
[294]. Similarly, an increased GDI was observed with a
combination of the Credit GBH and imazethapyr-based
(Pivot) herbicides on R. arenarum tadpoles [295]. After
co-exposure to the herbicides, synergistic effects were
demonstrated in DNA damage induction based on meas-
urements in blood cells compared to treatment with the
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single herbicide [295]. GLY and 2,4-D are the most com-
monly used herbicides worldwide with well over 700,000
and 150,000 tonnes applied per year, respectively [296],
and are used singly and in combination for weed con-
trol in various crops such as cotton, soybean, and corn
[297, 298]. Therefore, these two herbicide Als are fre-
quently detected in surface waters, especially near agri-
cultural fields [35, 299-303]. The combination of GLY
and 2,4-D had no effect on the survival of exposed Boana
faber and L. latrans tadpoles although swimming activ-
ity and growth were significantly affected [303]. Addi-
tionally, various types of damage and abnormalities were
observed in the intestine, mouth, and erythrocytes of
tadpoles [303].

While the mechanism of how co-formulants enhance
the uptake of pesticide Al is well known [17, 304], pre-
dicting negative impacts on the non-target organisms is
not straightforward. Furthermore, conducting ecotoxi-
cological testing on various co-formulants is difficult, as
these components are usually not identified on the labels
of commercial pesticide formulations with their exact
composition often considered as confidential business
information. Many studies have shown that co-formu-
lants of GBH can affect toxicity, including phytotoxicity,
cytotoxicity developmental neurotoxicity, genotoxicity,
and endocrine-disrupting effects of GLY on various non-
target organisms such as fish and amphibians [31, 32, 74,
175, 247, 277, 305, 306].

Other environmental pollutants, such as heavy met-
als, nanomaterials, and microplastics may be present in
aquatic environments, and these chemical compounds
may also interact with GLY residues and its metabo-
lites. A concentration-dependent effect of a combina-
tion of copper and GLY on the growth and physiological
response of Salvinia natans has been reported [307].
Antagonistic effects were observed in plants exposed
to low concentrations of copper and GLY, while syner-
gistic effects were observed at higher concentrations.
Furthermore, higher levels of hydrogen peroxide malon-
dialdehyde were detected after individual and combined
exposure, indicating the occurrence of oxidative stress
[307]. After exposure to a GBH (Faena, 1.04—1.57 mg 17!
GLY) and copper (2.45-4.31 pg 1%), a delayed age at
first reproduction, an increased number of aborted eggs,
reduced fecundity and a lower number of clutches per
female were observed in the parental and F1 generations
of Daphnia exilis [165]. In addition, reduced carbohy-
drate and lipid contents were detected in both genera-
tions [165]. The observed combined effects of GLY and
copper were stronger in the F1 generation [165]. Due to
the presence of arsenic in natural phosphate ores, their
use in the production of agrochemicals and particularly
phosphate fertilizers, may pose an additional risk to the
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environment and food safety [18, 308]. A worrying find-
ing in this context is the detection of heavy metal (e.g.,
arsenic, chromium, nickel, lead) impurities and petro-
leum residues in 11 different GBHs (e.g., Glyphogan,
Medallon Premium, Roundup Classic) [18]. The presence
of impurities (e.g., heavy metal, residues of polycyclic
aromatic hydrocarbons), may originate from the produc-
tion phase of the commercial formulations and poten-
tially can contribute to the toxicity of GBHs (e.g., possible
endocrine disrupting effects, carcinogenicity, neurotoxic-
ity) [18, 309, 310]. Therefore, regulators should require
manufacturers to identify and quantify toxic impurities
in commercial pesticide formulations.

In chronic tests, toxic multigenerational effects of a
mixture of GLY and silver nanoparticles were observed
in D. magna [173]. A significant delay in the release of
the first offspring and altered reproductive parameters
(reduced number of newborns) were also demonstrated
in the unexposed and offspring exposed to the individ-
ual compounds. Simultaneous exposure to GLY and sil-
ver nanoparticles resulted in a higher degree of toxicity
compared to that observed with the individual test sub-
stances. In acute toxicity testing, antagonistic and addi-
tive interactions were observed, possibly due to GLY
forming complexes with the nanoparticles [173]. Simul-
taneous exposure of citrate-functionalized iron oxide
nanoparticles and the GBH Roundup Original resulted
in clastogenic (DNA damage) and aneugenic (cell nuclear
alterations) time-dependent effects in guppies (P reticu-
lata) [311]. Synergistic effects were observed compared
to controls and guppies exposed to nanoparticles alone
[311]. In Nile tilapia (O. niloticus) exposed to a Roundup
GBH (0.6 mg AI 17!), the toxic effects of GLY, such as
induction of oxidative stress and immunosuppression
were alleviated in the presence of propolis nanoparti-
cles fed to exposed animals compared to the GLY-alone
exposed group. This was evident through reduced gill
and liver glutathione concentrations and decreased
white and red blood cell counts [312]. Circulatory dam-
ages, inflammatory responses, and the activation of the
immune system were observed in P, reticulata exposed to
the mixture of a GBH (Roundup Original) and iron oxide
nanoparticles [313]. Additionally, concentration-depend-
ent ultrastructural alterations were observed [313].

In the environment, plastic waste can undergo deg-
radation processes that lead to the formation of micro-
and nano-plastics. These micro- and nano-plastics can
directly and indirectly affect aquatic organisms, and can
adsorb other chemical compounds, leading to combined
contamination. The antagonistic combined toxicity of
GLY and polystyrene nanoparticles modified with cati-
onic amino acids, was observed in the inhibition of the
growth of blue-green algae (M. aeruginosa) [314]. This
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was attributed to the high adsorption capacity of nano-
particles for GLY, resulting in a lower inhibitory effect
of this herbicide Al The presence of GLY increased the
stability of the dispersion system, allowing for higher
adsorption of nanoparticles on the surface of algal cells,
which may lead to biomagnification of nanoparticles in
food webs [314]. Synergistic effects were demonstrated
in D. magna exposed to a combination of GLY and poly-
styrene nano-plastic [315]. Simultaneous exposure of the
tested compounds resulted in increased immobility and
production of ROS, while swimming activity decreased.
Multigenerational responses were also observed after
exposure of the parental (F;) generation of daphnids to
the mixture of GLY and nano-plastic, with altered repro-
ductive parameters in the F; and F, generations as indi-
cated in recovery tests [315]. The tested GLY forms (GLY
acid, GLY-IPA, and GBH Roundup Gran) also increased
the mortality of D. magna in the presence of microplas-
tics such as polyethylene microbeads and polyethylene
terephthalate/polyamide fibers, while the interaction
between the treatment and time was not significant
[316]. After 60 days of exposure to a combination of GLY
(15 mg 1!) and polyethylene microplastics (4.5 mg 17%),
free-swimming behavior of C. carpio was found to be
inhibited [252]. Microplastics alone and in combination
with GLY disturbed physical and chemical intestinal bar-
riers in exposed fish. Altered abundance and diversity of
the gut microbiota and changes in amino acid and lipid
metabolism were also observed with simultaneous expo-
sure to the test compounds [252].

Combined effects with pathogens and parasites

Exposure to a low concentration (1 pg 17!) of GLY and
GBHs (Roundup Innovert and Viaglif Jardin) had an
impact on the susceptibility of rainbow trout O. mykiss
fish to viral infection, specifically to hematopoietic
necrosis virus [317]. Roundup Innovert significantly
reduced cumulative mortality, while exposure to Via-
glif Jardin resulted in increased mortality of O. mykiss,
whereas pure GLY had little effect on the endpoints stud-
ied [317]. Furthermore, exposure to a higher concentra-
tion (500 pg 1™!) of GLY or its GBH formulations caused
significant differences in red and white blood cell counts
and altered enzymatic activities in O. mykiss infected
with infectious hematopoietic necrosis virus after a 96-h
exposure and 96-h post-viral infection [318].

Individual exposure to a GBH (0.36 mg AI1™') and the
trematode parasite Telogaster opisthorchis, did not affect
the survival of juvenile roundhead galaxias (Galaxias
anomalus) fish [319]. However, simultaneous exposure to
GLY and parasitic T. opisthorchis infection significantly
decreased fish survival. Juvenile fish exhibited spinal
malformations after exposure to the infection alone and
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in combination with GLY, and synergistic effects were
observed between GLY and the presence of parasites.
GLY at a moderate concentration (3.6 mg AI1™!) resulted
in significantly higher production of T. opisthorchis cer-
cariae in their snail intermediate host, the New Zealand
mud snail (Potamopyrgus antipodarum), compared
to the control group [319]. In the fish L. rohita, a sig-
nificantly increased susceptibility to the pathogen Aero-
monas hydrophila was observed in the presence of a GBH
at sub-lethal concentrations (Roundup, 0.63-13.6 mg Al
171) [222]. Therefore, reduced survivability and increased
susceptibility to the infection was observed in GBH
exposed fish [222].

The detected interactions between GLY/GBH and
other environmental pollutants are immensely complex
effects. The presented combined effects between GLY
and pathogens or parasites are summarized in Table 11.
The combined toxicity of various chemical compounds
is understudied, whilst during the ERA regulatory agen-
cies generally rely on results obtained solely from stand-
ard laboratory studies using test organisms exposed to a
range of concentrations of single compounds. However,
under natural conditions, organisms come into contact
with a very wide range of environmental pollutants. From
the studies presented here, it appears that numerous
aquatic pollutants can alter the effects of GLY and GBHs.

Comparison with the 2023 EFSA conclusion

on aquatic toxicity of GLY/GBH

The most recent conclusion on the peer review of the
risk assessment of GLY was published by EFSA on 26
July 2023 [320]. The document provides an evaluation
of the risk profile of GLY based on undisclosed studies
submitted by the manufacturers and the publicly avail-
able peer-reviewed scientific literature. According to the
conclusions, the overall data provided in the risk assess-
ment of GLY were considered sufficient for the assess-
ment of environmental exposure, but concerns were
raised about the potential exposure of groundwater via
infiltration or contaminated surface water bodies due to
the large proportion of land treated with GLY. This was
recognized as a data gap. Furthermore, the surface water
monitoring for GLY and AMPA residues carried out by
the applicants, showed weaknesses in methodology and
the use of minimum quality criteria and was, therefore,
considered to have limited suitability for regulatory pur-
poses. These issues are critical as they may impact the
ecological health and the safety of water sources. Over-
all, the EFSA conclusion highlights general data gaps and
potential risks and refers to the lack of harmonized meth-
ods and sufficient data on the adverse effects on aquatic
macrophytes, broader ecological impacts, or the aquatic
stage of amphibians. In addition to these uncertainties,

Page 48 of 62

the assessment does not conclude on certain areas such
as adverse effects on biofilms or changes in microbial
communities.

Therefore, our review aquatic ecotoxicology on differ-
ent groups of aquatic organisms (from microbial commu-
nities, cellular and high-ordered macrophytes to aquatic
invertebrates and vertebrates) is an essential complement
to adequately assess the impact of increased use of GLY/
GBHs [320]. Based on EFSAs conclusion and the results
of the reported ecotoxicological studies, it is essential to
develop state of the art guidelines to adequately address
all environmental hazards from the use of GLY/GBHs,
including the most sensitive species. According to the
EU Pesticide Law (Regulation (EC) 1107/2009), the same
level of safety should be ensured for a pesticide product
as for the Al Pesticide exposure under real environmen-
tal conditions occurs in the form of commercial pesticide
formulations, but is only taken into account in the EU in
a second stage at the Member State level. To comply with
EU legislation and protect human health and the envi-
ronment, studies on Als and formulations should be con-
sidered during the risk assessment for the authorization
of Als.

In addition, stricter regulation of co-formulants per se
is needed, as a co-formulant can affect the toxicity of the
formulation and the fate of the Al in the environment.
However, Annex III of Regulation (EC) 1107/2009, which
is supposed to contain the list of banned co-formulants in
commercial pesticide formulations, still does not contain
an entry [36]. This is difficult to understand from a scien-
tific point of view, as there is ample evidence for the acute
and chronic toxicity of this class of substances. Moreover,
a standardized approach should be developed to assess
the combined toxicity of different co-occurring chemi-
cal compounds. The ecotoxicological assessment of the
individual co-formulants and the combined effects of the
components contained in formulated products should be
an essential part of a comprehensive ERA for commercial
pesticide formulations.

Civil society has criticized the EFSA conclusion refer-
ring to the cancerogenic and neurotoxicological potential
of GLY [320] and the scientific information and data gaps
identified, including the lack of information on the long-
term toxicity of one of the representative uses that should
have been identified as critical areas of concern by EFSA.
However, EFSA’s definition of critical areas of concern is
clear: if it is established that no safe use can be ensured,
if the risk assessment cannot be finalized, or if the criteria
laid down in Article 4 of Regulation (EC) 1107/2009 are
not met, the EFSA must establish a critical area of con-
cern for one or several endpoints [36]. The state-of-the-
art of independent science proves that the harm caused
by GLY and its formulations is unacceptable, which
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was not made clear in the ECHA and EFSA assessment
[321]. EFSAs recent conclusions on GLY recognizes that
GLY is toxic to aquatic organisms (category chronic 1—
toxic <0.1 mg 17!, category chronic 2—toxic between 0.1
and 1 mg 17!). In addition, data gaps on aquatic toxicity
to aquatic macrophytes and open questions regarding
the impact on biodiversity through indirect effects and
trophic interactions were identified. These data gaps, the
independent studies on the impact of GLY and AMPA on
aquatic life, and our findings regarding the current levels
of GLY and AMPA contamination of surface waters indi-
cate that the approval criteria are not met.

Despite identified adverse effects of GLY in the scien-
tific literature and the data gaps identified in the EFSA
conclusion, the European Commission proposed to re-
authorize GLY with certain restrictions. On 28 Novem-
ber 2023, the Commission implementing (EU) Regulation
2023/2660 was published, with allows GLY in the EU for
10 years, with several binding and non-binding restric-
tions [322]. These include a ban on desiccation with GBH
and the requirement to Member States to pay particular
attention to the following: (i) uses by non-professional
users, (i) residues that may be present in succeeding
crops grown in rotations, (iii) the protection of ground-
water in vulnerable areas and of surface waters, (iv) the
protection of small herbivorous mammals, (v) the pro-
tection of non-target terrestrial and aquatic plants from
exposure by spray drift, and (vi) indirect effects on bio-
diversity via trophic interactions once relevant methods
and guidance to identify such effects are agreed at Union
level. In addition to this last requirement, the Commis-
sion requested that the applicant (companies that applied
for the reauthorization of GLY) to submit within three
years confirmatory information on the possible indirect
effects on biodiversity through trophic interactions. The
Commission also proposed maximum application rates,
which may only be exceeded if appropriate risk assess-
ments are available. As several national authorities, par-
ticularly in smaller Member States, do not have sufficient
capacity and resources, it is unlikely that the above listed
provisions will be fulfilled. In addition, the status of GLY
in the EU, characterized by the recent renewal with addi-
tional restrictions, contrasts with the situation in other
countries, where there is a complete ban in some coun-
tries, cautious use in others, and ongoing legal and public
debates that continue to influence policy and perceptions
of this widely used herbicide.

Our review is not based on the manufacturers’ stud-
ies. Some of the studies presented in our review are not
included in the EFSA conclusion [320], which has been
subject to criticisms, as they indicate the potential harm
that GLY/GBHs can cause to aquatic species and eco-
systems. Hence, the present review clearly complements
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EFSAs conclusion and provides novel views. Further-
more, the EFSA conclusion is not really user-friendly as
the references are fragmented and lack a single, complete
and clear reference section. In addition, the names of
authors and publications are often blacked out and not
searchable. This review also contains studies that were
not included in the EFSA conclusion because they were
not considered compliant with Good Laboratory Practice
(GLP).

Conclusions

It is widely assumed, especially within regulatory agency
circles, that the effects of GLY and its commercial formu-
lations are specific and affect only the target plant spe-
cies. However, the extensive evidence presented in this
review demonstrates that GLY/GBHs can have multiple
effects on non-target organisms in aquatic ecosystems.
Due to the physiochemical properties of GLY, it can easily
enter the aquatic environment. Similarly, multiple effects
of GLY and GBHs on terrestrial ecosystems has also evi-
dently been shown [323]. The risks associated with the
ecotoxicity of GLY and associated co-formulants in GBHs
most likely arise from the higher residue levels result-
ing from consistent and frequent large-scale application.
In general, commercial pesticide formulations consist
of Als and various co-formulants to enhance effective-
ness, which includes improving the bioavailability of Als.
These co-formulants have been considered as inactive
components with respect to the intended biological effect
of commercial pesticide formulations. However, a large
and growing number of scientific studies have unequivo-
cally demonstrated the high toxicity of the co-formulants
in their own right [31, 32]. This increased combined tox-
icity of the components present in commercial pesticide
formulations has been demonstrated for POEA and many
other co-formulants in GBHs [31, 32]. Consequently,
POEA has been banned in GBHs under current EU legis-
lation although POEA replacements (e.g., Dodigen 4022,
propoxylated quaternary ammonium surfactant) pur-
ported as safe alternatives have also proven to be toxic
[33, 324]. Therefore, co-formulants cannot be considered
inert or inactive ingredients.

The occurrence of residues of GBHs in surface waters
is now a globally observed phenomenon. There is a sub-
stantial quantity of scientific data available on the acute
toxicity of GLY. However, it is difficult to extrapolate and
compare the results because the sensitivity of the test
organisms, the test conditions, and the composition of
the GBHs vary, even if they have the same trade name.
Although GLY may be less acutely toxic compared to
other herbicidal Als, unintended adverse outcomes from
GLY exposure have been demonstrated in numerous
studies on a wide range of aquatic organisms, including
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aquatic microorganisms, zooplankton, mollusks, and
higher order aquatic plants, fish and amphibians.

One of the fundamental mechanisms underlying these
negative effects on the health of various organisms is the
induction of oxidative stress, and metabolic and endo-
crine disruption, which in some cases results in DNA
damage [106, 107, 117, 203, 214, 215, 281, 288, 325].
These effects lead to various changes in physiological
processes. According to the results of research studies,
the tested behavioral endpoints should also be considered
during the ERA of pesticides including GBHs. Behavior,
as a sublethal endpoint measurement, provides a par-
ticularly sensitive and early indication of biotic disrup-
tions and damage compared to severe physiological and
mortality-based endpoints [326-329]. The exceptionally
high use of GLY has exceeded 800 thousand tons per year
since 2014 [39], with current estimates suggesting that it
has now exceeded one megaton per year worldwide. Even
at a conservative estimate, this amount of GLY is equiva-
lent to three times the amount of phosphorus fertilizer
applied annually, in terms of phosphorus content. If GLY
is washed into standing water bodies, it can therefore sig-
nificantly contribute to eutrophication. Currently GLY
is the leading pesticide in the market and its use is pro-
jected to increase 4.5-fold between 2022 and 2029. This
extremely high rate of usage poses a substantial environ-
mental burden resulting in increased exposure and risks
to non-target organisms.

Another important issue to address is the consequences
of evaluated levels of AMPA, the primary GLY degrada-
tion product, in relation to GLY residues found in vari-
ous water matrices, including surface and drinking water.
However, it should be noted that AMPA can be formed
not only by the degradation of GLY, but also by its use
as a water softener. In the EU, AMPA is not considered
a significant metabolite to be taken into account when
evaluating the parametric values for GLY in drinking
water (0.1 ng ml™!) established in the European Drink-
ing Water Directive (EU) 2020/2184 for pesticide active
substances and their relevant metabolites. Nevertheless,
some nations such as Denmark, Hungary and France
apply a limit value of 0.1 pg I™! for AMPA in drinking
water as is the case for pesticide Als. There is currently
no environmental quality standard (EQS) for either GLY
or AMPA at the EU level. In a recent proposal, the Euro-
pean Commission revised the list of priority substances
for surface water and included an extremely high EQS
value for GLY, which would allow a higher level of con-
tamination compared to drinking water safety standards.
The same proposal included a threshold of 0.5 pg I™* (AA-
EQS—annual average of environmental quality standard)
for the combined concentration of pesticide Als or rele-
vant metabolites, and degradation and reaction products.
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At the time of writing of this review, the European Com-
mission and EU Member States have not yet determined
whether metabolites such as AMPA, which evidently
pose a risk to the aquatic environment, will be included
in this threshold limit, nor have final EQS values been set
by EU policy makers. In 2023, the European Parliament
voted on a more ambitious AA-EQS of 0.1 pg ™! for
inland surface waters, which is under discussion in the
European Council.

Numerous studies assessed in this review indicated that
AMPA can have equal and sometimes even stronger det-
rimental effects compared to GLY in given life stages of
aquatic organisms including microorganisms [101], algae
and aquatic plants [148, 154], echinoderms and mol-
lusks [196, 199, 201, 330] and fish [234, 246, 255, 258].
AMPA is more persistent in the environment, and EFSAs
conclusion of 2023 state that the toxicological profile of
AMPA is similar to the toxicity of GLY [320, 331]. There-
fore, both AMPA and GLY concentrations should be
considered when setting the limit for drinking water. In
this regard, the fact that AMPA as a residue may origi-
nate from other industrial uses rather than the metabo-
lism of GLY is ecotoxicologically irrelevant. Both GLY
and AMPA pose a risk to the aquatic environment, and
GLY is already classified as being toxic to aquatic life with
long-lasting effects (Aquatic Chronic 2; H411). However,
certain studies [81, 84] would justify a more stringent
classification.

The combination of GLY and co-formulants often leads
to additive or synergistic effects. Furthermore, GLY,
GBHs, and even the co-formulants can induce a wide
range of lethal or sublethal ecotoxicological outcomes
as demonstrated in numerous non-target aquatic organ-
isms even at very low concentrations of exposure (Fig. 1)
[198, 201, 216]. Aquatic organisms are highly exposed to
aquatic pollutants, and their direct contact with these
xenobiotics in water is unavoidable. Therefore, routine
monitoring of their exposure is necessary, and the cur-
rent aquatic toxicity classification of GLY and GBHs
should be re-evaluated. The toxicity of GLY in the aquatic
environment varies significantly among different species
in all taxa and is influenced by exposure conditions such
as timing, duration, and extent [74]. Recently, the toxic
effects of GLY on amphibians have gained attention in
research, indicating that amphibians are particularly sus-
ceptible to the effects of GBHs compared to other verte-
brates due to their specific lifestyle, which includes both
aquatic and terrestrial environments during different life
stages [273].

This review presents the results of scientific research
that examines the aquatic ecotoxicity of GLY and its
commercial formulations as well as the co-formulants
present in GBHs. Our review is not based on studies
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conducted by the manufacturers. Some of the presented
results are not included in the EFSA conclusion pub-
lished in July 2023 [320]. The observed adverse effects
have been demonstrated using a wide variety of end-
points, methods and thresholds to assess the exposure
and potential outcomes of the tested substances. It can
be concluded that we do not fully know the exact unin-
tended effects of GLY on aquatic non-target organisms
and ecosystems even after several decades of GBH use.
One of the main problems hindering ecotoxicological
assessment is the lack of knowledge of the exact com-
position of GBHs, which is withheld on the grounds
of confidential business information and, therefore,
not published. There is still a great need for studies to
evaluate the potential toxic effects of co-formulants in
GBHs. The current regulation is based on an ERA per-
formed on the AI or commercial pesticide formulations
used only once or a few times on a given crop. This is
despite the fact that in standard agricultural practice
multiple applications of commercial pesticide formula-
tions are conducted during a cultivation cycle. In addi-
tion, the effects of commercial pesticide formulations
are evaluated on each group of test organisms sepa-
rately during ERA with interactions between the dif-
ferent trophic levels of the ecosystem not included in
the assessment [332, 333]. Furthermore, ERA does not
prescribe in-field risks, although biodiversity conserva-
tion must be supported to ensure important ecosystem
services [333]. The consequences of decades of multiple
uses GBHs are not assessed.

In summary, this review has identified important
knowledge gaps for a systematic and comprehensive
assessment of the aquatic ecotoxicity of GLY and GBH.
Therefore, we recommend that the current ERAs be
updated to include the following non-exhaustive list of
issues:

+ Supplement the predominantly short-term, single-
species aquatic toxicity testing of GLY and GBH
with a focus on aquatic primary producers, inverte-
brates, or vertebrate (such as fish and amphibians)
with multispecies and trophic interactions and
indirect effects on aquatic food webs and surround-
ing landscape.

+ At a minimum, include amphibians and reptiles in
ERA species lists, as they are among the most threat-
ened species on Earth.

+ Investigate the contribution of all ingredients of a
GBH, including the various GLY Als, co-formulants,
and other contaminants such as heavy metals [18].

+ Evaluate effects on the composition and function of
aquatic microbiota inhibited by GLY-effects on their
shikimate metabolic pathway.
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+ Conduct systematic long-term monitoring studies
on the effects of high and low chronic exposure in
aquatic species with different generation times.

o Evaluate interactions with other contaminants in
freshwater and marine ecosystems such as agro-
chemicals, antibiotics, other chemicals, nutrients,
microplastics, light pollution, parasites and climate
change factors.

+ Explore the impacts of GLY and GBHs on aquatic
biodiversity, the consequences of biofilms on food
quality at higher trophic levels, and other indirect
bottom-up and top-down effects [333].

Some of these knowledge gaps are similar to those
previously noted in our review on terrestrial ecotoxicity
of GLY and GBHs [323] and also highlighted in the last
EFSA Conclusion [320]. Apparently, government regu-
latory agencies have neglected the ecologically relevant
extent of aquatic ecotoxicity in the ERA of GLY and
GBHs for decades. Given the serious non-target effects
on aquatic ecosystems already identified, and before
these serious knowledge gaps are adequately addressed
in the ERAs, the precautionary principle enshrined in EU
law would actually recommend that GLY/GBHs be with-
drawn from the EU market. The current environmental
risk assessments and regulatory measures for GLY/GBHs
are clearly inadequate to protect aquatic ecosystems and
biodiversity.

GBHs mentioned in this review

Aria; Biocarb; C-K Yuyos; Clinic; Credit; Enviro; Fac-
tor 540R; Faena; Forceup; Glifoglex; Glifosato II Atanor;
GLY-4 Plus; Glyphogan; Glyphogan Classic; Info-
sato; Kilo Max; Medallon Premium; Orium; Roundup;
Roundup Active; Roundup Allées et Terrasses; Roundup
Classic; Roundup Express; Roundup Flex; Roundup Full
II; Roundup Gran; Roundup Innovert; Roundup LB Plus;
Roundup Max; Roundup Power 2.0; Roundup PowerFlex;
Roundup Original; Roundup Original MAX; Roundup
Original DI; Roundup SL; Roundup Star; Roundup
Transorb; Roundup Ultra 360 SL; Roundup UltraMax;
Roundup WeatherMax; Roundup Weed & Grass Killer;
Sulfosato Touchdown; Sumin Atut; Taifun Forte; Viaglif
Jardin; VisionMax.

Abbreviations

AA-EQS  Annual average of environmental quality standard
AChE Acetylcholinesterase

ae. Acid equivalent

Al Active ingredient

AMPA Aminomethylphosphonic acid

APG Alkyl polyglucoside

chl-a Chlorophyll-a

DNA Deoxyribonucleic acid

ECs 50% Effective concentration
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ECHA European Chemical Agency

EFSA European Food Safety Authority

EPS Extracellular polymeric substances
EQS Environmental quality standard

ERA Environmental risk assessment

EU European Union

GBH Glyphosate-based herbicide

GDI Genetic damage index

GGT y-Glutamyltransferase

GLY Glyphosate

GLY-IPA Glyphosate-isopropylammonium salt
GST Glutathione-S-transferase

GT Glyphosate-tolerant

GM Genetically modified

ICs 50% Inhibitory concentration

LCso 50% Lethal concentration

ppm Parts per million

MXR Multixenobiotic resistance

POEA A mixture of polyethoxylated tallow amines
ROS Reactive oxygen species

RTG-2 Rainbow trout gonad-2

SOD Superoxide dismutase

TBARS Thiobarbituric acid reactive species
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