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Abstract 

In the last decade, biochar application research has emerged as a hot topic in water treatment studies, which made 
biochar adsorption one of the primary wastewater treatment strategies. This paper presents a global bibliomet-
ric analysis of 2673 publications from the Web of Science database, spanning 2011–2022. For a comprehensive 
understanding of the research status and trends in biochar adsorption for wastewater treatment, the advanced 
quantitative and visual analysis tools (i.e., CiteSpace and ArcGIS) were employed. The results showed that China 
emerged as the leading country with the most published articles. The key research area is on the magnetic adsorp-
tion of biochar in wastewater. The articles summarized in the review demonstrated unequivocally that biochar can 
treat a wide range of wastewater even though the adsorption mechanisms of biochar on heavy metals, inorganic 
salts and organic pollutants in wastewater are not entirely consistent. The review further analyzes the factors affect-
ing the performance of biochar in adsorbing pollutants from wastewater and the improvement measures of biochar 
functional characteristics, proposing the future research directions focusing on the improvement of the adsorption 
capacity of biochar products. The information synthesis and discussion would provide valuable insights on the his-
torical, current, and future trends in biochar research, beneficial to solve the practical problems of water pollution 
and improve the quality of the environment.
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Introduction
While there is no settled scientific definition, biochar 
typically refers to biomass-derived char by its nominal 
meaning [1]. Biochar is a dark (black) porous solid that 
consists mainly of amorphous carbon and is obtained 
as a residue when the materials such as woody residues 
[2], agricultural byproducts [3], animal bones [4], or 
other biomass materials [e.g., sewage sludge, and ani-
mal manure] are pyrolyzed (i.e., partially burned or 
heated) with limited access to air [5, 6]. In last couple 
of decades, biochar has been intensively explored for its 
potential applications as a durable soil healthy enhancer 
and an environmental remediator [1, 7]. Currently, 
wastewater treatment is one of the hot topics in biochar 
application research [8–10] as the rapid development of 
industry and urbanization worldwide produces a great 

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Environmental Sciences Europe 

*Correspondence:
Yuanrong Zhu
zhuyuanrong07@mails.ucas.ac.cn
1 State Key Laboratory of Environment Criteria and Risk Assessment, 
Chinese Research Academy of Environmental Sciences, Beijing 100012, 
China
2 College of Geography and Environmental Science, Northwest Normal 
University, Lanzhou 730070, China
3 School of Water Conservancy and Environment, University of Jinan, 
Jinan 250022, China
4 Key Laboratory of Land Surface Pattern and Simulation, Institute 
of Geographic Sciences and Natural Resources Research, Chinese 
Academy of Sciences, Beijing 100101, China
5 USDA-ARS, Southern Regional Research Center, 1100 Allen Toussaint 
Blvd., New Orleans, LA 70124, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-024-00859-z&domain=pdf


Page 2 of 17Wang et al. Environmental Sciences Europe           (2024) 36:25 

deal of wastewater and water pollution, which, if not 
treated properly, will endanger the living environment 
and human health [11]. Per their origins, wastewater 
can be further categorized as industrial wastewater, 
urban wastewater, agricultural wastewater and rainwa-
ter. It should be noted that these different wastewaters 
require different treatment methods because the chem-
ical natures of these pollutants are different [12, 13].

As a porous granular solid material, biochar has 
a large specific surface area, a rich pore structure, 
wealthy surface functional groups. It is an excellent 
material for adsorption [14]. For example, the adsorp-
tion effect of biochar on heavy metal ions, phosphoric 
acid, and ammonia nitrogen is often good [15–17]. 
Compared to the original biochar, the chemically modi-
fied biochar generally has a larger surface area, rich 
functional groups, and a higher adsorption capacity 
[18]. The adsorption potential of biochar is high for 
both organic and inorganic pollutants, which involves a 
variety of mechanisms such as pore filling, electrostatic 
interactions, ion exchange, precipitation, and surface 
adsorption, among others [19]. These mechanisms 
depend not only on the type of pollutants, but also on 
changes in the physicochemical properties of biochar, 
such as the amount of addition used as biochar, and the 
temperature of pyrolysis is associated with the pH of 
the substrate under treatment [11, 20, 21].

Despite extensive research on biochar adsorption for 
wastewater treatment in recent decades, most of them 
are qualitative rather than quantitative, and there has 
not been a systematic and comprehensive summary and 
review of the evolutionary trends in this field. Under-
standing these aspects is essential for the efficient allo-
cation of resources to accelerate the development of 
effective wastewater treatment technologies. To offset 
the lack of quantitative visual review in this field, this 
paper makes innovative use of scientometric to analyze 
the latest status of biochar and related technologies. The 
purpose is to provide some references for researchers 
to further development of the biochar application as a 
lower-cost treatment method with less likely potential of 
secondary pollution. While it is known that biochar can 
adsorb industrial wastewater, urban wastewater, agricul-
tural wastewater and rainwater, and effectively removing 
heavy metal ions, inorganic salts and organic pollutants 
in wastewater, a quantitative bibliometric analysis of rele-
vant biochar articles would present this research process 
visually and deduce future emerging trends [22]. Simi-
larly, CiteSpace is a piece of software that presents the 
structure, rules and distribution of scientific knowledge 
in a visual manner [23, 24], has been used extensively in 
hotspot change research and trend analysis [25, 26]. This 
CiteSpace analysis allows the structure of knowledge in 

the biochar field and its historical development to make 
biochar application in wastewater more widespread.

Specifically, this paper presents the bibliometric 
analysis of biochar adsorption for wastewater treat-
ment research published from 2011 to 2022, using the 
bibliometric visualization tools provided by the CiteS-
pace software. Furthermore, the information on bio-
char adsorption of pollutants including heavy metals, 
inorganic salt, and organic pollutants in wastewater and 
improvement measures for biochar were also synthesized 
and discussed. Our objectives are: (i) to analyze the sig-
nificant contributors to biochar adsorption for waste-
water treatment worldwide; (ii) to identify the current 
research hotspots and development trends in biochar 
adsorption for wastewater treatment; and (iii) to pinpoint 
potential future research directions in this area. As an 
utmost purpose, we look forwarding to this paper being 
beneficial to solve the “real world” problems of water 
environment pollution and improve the quality of the 
environment.

Methods and data acquisition
Data collection and data processing
The Web of Science (WoS) is a global citation database 
developed independently by the world’s most trusted 
publishing houses, and an information-dominated 
research platform for science, the arts and the humani-
ties [27]. With WoS (2011–2022) as the science database, 
articles were picked up with the combination of three 
topics keywords “Biochar”, “Adsorption”, and “Wastewa-
ter”. Chronologically, the first and the last papers meet-
ing these search criteria were from January 2011 and 
December 2022, respectively. To ensure accurate and 
objective analysis, irrelevant materials (e.g., conference 
calls to journal articles, prefaces and book reviews) were 
removed, leaving two categories of articles (i.e., research 
papers and reviews) accounted [28]. In this way, a total 
of 2673 related publications were identified. The record 
is exported as a “complete record and references” and 
contains information such as authors, affiliations, titles, 
source publications, abstracts, keywords and references.

Scientific quantitative analysis method
CiteSpace brings various features to researchers by identi-
fying themes, finding hot spots, and so forth, and automati-
cally labelling clusters using terms in selected documents 
[29, 30]. In the current study, CiteSpace software was used 
to perform a detailed analysis of identified 2673 papers 
[31]. From a data processing perspective, the time frame 
chosen is January 2011 to December 2022, with a time slice 
of 1 year, a threshold value of Top = 30, and other parame-
ters as default values. Data from the literature are analyzed 
in terms of circulation, country, institution, periodical, 
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research focus and research hotspot. Interpreting the out-
comes of these analyses allows us to describe the trend of 
biochar adsorption development for wastewater and to 
predict issues and breakthroughs that may be worth not-
ing in the future. Within these visualizations, greater coop-
eration corresponds to higher betweenness centrality (BC). 
Nodes with high BC values are considered key contributors 
[30]. BC is calculated by the following equation:

(1)BCnodek
=

∑

i �=m�=n

ρmn(k)

ρmn

,

where ρmn is the number of shortest paths between 
nodem and noden , and ρmn(k) is the number of those 
paths passing through nodek.

Results and discussion
Analyses of the baseline characteristics of articles 
published
Annual changes of article publication
The annual numbers of papers published reflect the 
development trend in biochar adsorption for waste-
water treatment research [32]. The paper count on bio-
char adsorption for wastewater treatment has grown 
substantially over the years (Fig.  1a). This phenomenon 

Fig. 1  Number and geographic distribution of publications on biochar adsorption of wastewater treatment. a Annual publications. b Visualisation 
of countries contributions. c Global geographic distribution map of published papers by country. The darker the color, the more papers are 
published
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demonstrated that research into biochar adsorption for 
wastewater treatment has gradually been given atten-
tion and development. The mean number of articles was 
223, and the total number increased stepwise. The initial 
phase of this study, between 2011 and 2013, had an aver-
age of 12 articles per year. The earliest publication in this 
period was titled as “A new magnetic biochar effectively 
sorbs organic pollutants and phosphate”, that has been 
published in the Journal of Bioresource Technology [33]. 
Others have reported that Fe3+/Fe2+ and orange peel 
magnetic biochar were prepared to have the ability to 
remove organic pollutants and phosphate from wastewa-
ter simultaneously and phosphate from the water. Mag-
netic biochar is also shown to be a potential adsorbent 
with the capacity to remove organic pollutants and phos-
phate from wastewater simultaneously [34]. Between 
2014 and 2017, the number of papers showed a signifi-
cant growth trend, and researchers gradually increased, 
with a mean of 75 papers. The average number of papers 
per year between 2018 and 2021 exceeds 400, indicating 
a boom in research on biochar adsorption wastewater. 
However, the number of papers published in 2022 is less 
than that published in the previous year for the first time. 
This may be due to the lagging impact of COVID-19 on 
reducing the research activities in 2021–2022. Overall, 
studies on biochar adsorption for wastewater treatment 
have received a great deal of attention in recent years. On 
the other words, biochar is widely explored for the pur-
pose to remove wastewater pollutants due to its excellent 
physical and chemical properties that make it an efficient 
adsorbent [35].

Country contributions
Visual analysis of countries with authors’ affiliations can 
not only identify countries central to the field of research, 
but also reflect relevant academic cooperation between 
different countries [22]. For this study, countries were 
selected for analysis in CiteSpace, and a county-level 
analysis map (Fig.  1b) was got. Country contributions 
were represented by frequency of occurrence, and the 
state’s position in the domain is denoted by centrality 
[22]. As the number of publications increases, so does the 
richness of country studies [25]. China is in absolutely 
first place in terms of the number (1392) of papers pub-
lished (Additional file 1: Table S1), revealing that China 
has extensive research in the surveying biochar area. 
This is because China has significantly strengthened eco-
logical and environmental governance, thus increasing 
the research and application of biochar adsorption for 
wastewater treatment. Due to those reported positively 
impacting adsorption characteristics, biochar has rapidly 
become the focus of China’s environmental remediation 
field, and has rapidly begun to be researched in numerous 

scientific research institutions [36]. Furthermore, the 
higher the centrality, the greater the number of partner-
ships, and the more central the country’s research in its 
field [37]. South Korea has the highest degree of central-
ity (0. 28), indicating that South Korea is at the centre 
of research in its field and is more inclined to cooperate 
with other countries. Judging from the geographic dis-
tribution of articles published by countries worldwide 
(Fig. 1c), the focus on biochar adsorption for wastewater 
treatment is unevenly distributed across the globe, con-
centrated primarily in Asia, North America, and Western 
Europe.

Institution‑level contributions
The analysis node chooses “Institution” this time, and a 
county-level analysis map (Additional file 1: Fig. S1) has 
been achieved [38]. A relatively dense set of nodes in the 
map with a total of 93 connections points to the fact that 
research institutions in this area have cooperated very 
frequently [39]. The top 10 research institutions in terms 
of the number of articles published in this area between 
2011 and 2022 are listed in Additional file 1: Table S2. Of 
which, the Chinese Academy of Sciences holds the most 
publications, followed by Hunan University and Korea 
University. The fact that six of the top 10 publications 
are from China shows that Chinese research institutions 
have the most extensive research in their areas of exper-
tise. The centrality of the Chinese Academy of Sciences is 
the highest in terms of the degree of centrality, reaching 
0.20, indicating that the Chinese Academy of Sciences 
has played a significant role in promoting cooperation in 
this area [40]. It can also be seen from Additional file 1: 
Table S2 that the Half-Value Period of the Chinese Acad-
emy of Sciences is 8.5  years, placing it first in the list, 
showing that the researches of the Chinese Academy of 
Sciences have achieved great results, and the institution 
has great potential for future research in this area [41]. 
The degree of centrality and the frequency of occurrence 
did not always appear in the same proportion [42]. It has 
been noted that the centrality of China Agricultural Uni-
versity, while the number of articles published by this 
institution is not remarkable, they are still very influential 
in their field due to close cooperation [43].

Authorship
A quantitative analysis of the author contributions can 
reveal the leading research representative academics 
in biochar wastewater adsorption [44]. Using the soft-
ware CiteSpace, define “Author” as the node and draw 
the knowledge map of the contributions of the authors’ 
(Fig.  2) [45]. First, judging by the link between the 
authors, each link is relatively dense, indicating that the 
authors are very closely cooperating in this area and 
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that exchanges between academics in biochar adsorp-
tion wastewater are relatively common [25]. Price’s law 
states that the core group of authors in the research 
area can be obtained [40]. The formula is

where M refers to the minimum number of publications 
that an outstanding author should achieve, and refers to 
the number of publications by the most prolific author.

Accounting for more than or equal to 50% of all arti-
cles, indicating the formation of a core set of perpetra-
tors [46]. As shown in Additional file  1: Table  S3, Ok, 
Yong Sik is the author with the most publications in 
this field since 2011 with 75 publications. Inserting this 
into the formula (2), we can obtain M = 6.48, and there 
are 42 authors with more than seven papers, which 
are categorized as core authors. A total of 569 articles 
were published by the above-core authors, representing 
28% (i.e., less than 50%) of the total number of articles, 
indicating that a core group of writers in the field has 
yet to form [47]. This may be due to the many avenues 
of research in a broader biochar area, so that certain 
research academics have not engaged in intensive and 
in-depth exploration on the targeting adsorption-
wastewater issue. Thus, there is a need for getting more 

(2)M = 0.749
√

Nmax,

researchers on board for the in-depth research on the 
biochar adsorption for wastewater treatment.

Diversity of disciplines and periodicals
In biochar adsorption wastewater research, the overlay of 
the dual map can clearly show the relationship between 
citations and citations between different disciplines [48] 
(Additional file 1: Fig. S2). The colored curves in the fig-
ure link citing and being cited, with citing disciplines on 
the left and cited disciplines on the right [49]. The ellipse 
size in the figure depends on the number of papers in the 
subject, and the internal value indicates the number of 
papers [50]. It can be concluded from Additional file  1: 
Fig. S2 that research in the area of biochar adsorption for 
wastewater is concentrated primarily in the topic groups 
of physics, metals, chemistry, animals and science. Most 
papers cited are concentrated in chemistry, metals, phys-
ics, environment, toxicology, and other topic groups. 
The group whose citation curves are labelled “Animals, 
Science, and Veterinary Medicine” has the most out-
ward citation paths, and this group of topics is the pri-
mary group of citing journals. When the environmental, 
toxicological, and nutritional groups of journals are cited, 
the corresponding animal, scientific, and veterinary dis-
cipline groups have the most citations, with a z-score of 
5.7043614.

Fig. 2  Biochar adsorption for wastewater treatment research author visualization
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In biochar adsorption for wastewater treatment 
research, the top 10 journals with the number of papers 
published in this field was list (Additional file 1: Table S4), 
which number of published articles accounts for 42.05% 
of the total number of papers. It can be inferred that 
while there are many published articles in this area, 
the distribution of published journals is relatively con-
centrated [51]. While the top ten journals have a mean 
impact factor of 9.9744, five journals retain an impact 
factor of 10. The impact factors for the top two “Chemical 
Engineering Journal”, and “Journal of Hazardous Materi-
als”, are 16.744 and 14.244, respectively. It can be seen 
that the research output is mainly spread over a small 
number of journals with higher impact factors, and it can 
be inferred that biochar adsorption wastewater research 
has been favored by high-impact factor-level journals 
[52].

Analysis of research hotspots
Keywords network
The high-frequency word co-occurrence map is gen-
erated in CiteSpace with the keyword as the object of 
analysis, and keywords are aggregated to obtain research 
hotspots and emerging research trends of wastewater 
related to biochar adsorption [53]. The high-frequency 
keyword co-occurrence map (Fig.  3) and the high-fre-
quency keyword table (Additional file  1: Table  S5) of 
biochar adsorption wastewater research have been gen-
erated by using CiteSpace software [54].

The keyword frequencies represent the sizes of the 
nodes and tags. As the frequency of keywords increases, 
nodes and labels become larger [55]. Different colors rep-
resent different years, the thicker the line, the more con-
nections between keywords [22]. It can be seen that the 
keyword that has the highest co-occurrence frequency 
in the field of biochar adsorption wastewater research is 
“wastewater”. The keyword “wastewater” in the analysis 
has the highest frequency of occurrence and centrality, 
showing that “wastewater” is the most important basic 
research and has received much scholarly attention. Fol-
lowed by in the order, “adsorption”, “aqueous”, “solution 
removal”, and “activated carbon” have also topped in the 
hot research list of biochar adsorption wastewater. The 
keywords analysis revealed that the research content in 
the area of biochar revolves primarily around the adsorp-
tion of pollutants in wastewater, such as using biochar to 
adsorb pollutants (e.g., methylene blue and heavy metals) 
into water columns, with a focus on analyzing its mecha-
nism of adsorption and the effect of pyrolytic tempera-
ture during biochar preparation on adsorption [56, 57].

Keyword clustering
Using the log-likelihood rate (LLR) algorithm allows 
for the clustering of keywords in the biochar adsorp-
tion wastewater field (Additional file  1: Fig. S3). The 
information for each cluster is shown in Table  1 [58]. 
In the keyword clustering, the field of biochar adsorp-
tion wastewater research is divided into ten categories, 
namely #0 magnetic biochar, #1 waste water, #2 heavy 

Fig. 3  Keywords network co-occurrence of biochar adsorption for wastewater treatment
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metal, #3 pyrolysis, #4 methylene blue, #5 temperature, 
#6 biochar, #7 crop residue, #8 lignocellulosic biomass, 
#9 nitrogen.

With each cluster covering a distinct keyword (Table 1), 
the largest cluster may be found depending on how many 
keywords each cluster covers [59]. A greater than 0.7 of 
the average silhouette value for a cluster in the domain 
indicates that a good cluster has formed [39]. Mean 
publication times for keywords within the cluster are 
expressed as mean years, indicating if the subject is near 
the front [22]. In the area of biochar adsorption wastewa-
ter, the average year for keyword clustering is predomi-
nantly 2012, indicating that this area has long ago formed 
a stable research system. On the other hand, the average 
search time for each cluster is very close. For this reason, 
it is impossible at present time to judge which cluster is 
closer to the state-of-the-art search [60].

Consisting mainly of papers on the preparation and 
use of magnetic biochar for the adsorption of pollutants 
in water, #0 magnetic biochar is the largest cluster. Mag-
netic biochar is an adsorbent that uses magnetic metals 
(mainly Fe) and their metal oxides for addition to the 
biochar matrix and uses its characteristics to remove pol-
lutants [61]. Indeed, various types of magnetic biochar 
can remove heavy metals and Pb(II) from the water [62, 
63]. #1 waste cluster includes important keywords such 
as tetracycline, hexavalent chromium, and nanoparticles. 
The content of this cluster primarily consists of articles 
related to the treatment of certain pollutants present in 
wastewater [64–66]. Category #2 heavy metal mainly 
includes articles related to the biochar treatment of heavy 
metals in wastewaters, such as the occurrence of heavy 
metals like cadmium and zinc [67, 68]. Other clusters 
include pyrolysis temperature when biochar is prepared, 
the adsorption of methylene blue by biochar, the temper-
ature of pollutants adsorbed by biochar, research on the 
structure of biochar, the feedstock of biochar using waste 

from agriculture and forestry, and the adsorption of bio-
char nitrogen, and so on [69–72].

Analysis of research status and future trends
Research status
To explore the history of keyword development in bio-
char adsorption for wastewater treatment research, we 
plotted a time-area map of keyword clustering (Fig.  4) 
[45]. The various clusters are sorted from top to bot-
tom based on the number of keywords they contain. 
The top of the map is when the keywords appear while 
the keywords within a cluster are distributed along the 
same horizontal line as a function of onset time [73]. 
The process of evolving the keywords in each cluster can 
be displayed via the connecting line in the figure, and 
the rise and fall of the cluster search can be analyzed 
via the time frame of appearance and disappearance of 
the horizontal solid line [74]. As shown in Fig. 4, all ten 
keyword clusters appeared in 2011, indicating that the 
field of biochar adsorption wastewater was very popular 
in its early stages, and was the subject of extensive aca-
demic research. Of these, #0 (magnetic biochar) and #1 
(wastewater) in keyword clustering have maintained a 
high popularity from 2011 to 2022. Both are at the heart 
of the biochar adsorption wastewater field, and each has 
achieved a great deal of research output. Magnetic bio-
char has consistently maintained a high level of research 
popularity. This research has focused on the adsorption 
of various pollutants by magnetic biochar, mainly cov-
ering the influence of magnetic biochar synthesis tem-
perature on pollutants [75, 76]. Pb(II) has been shown to 
have efficient adsorption and is also one of the hot top-
ics in magnetic biochar [77, 78]. The focus of wastewater 
research is rich in research content, and research time 
has been invested in a continuous mode. Although there 
are many early research results in the research content 
for other clusters, the number of search results decreases 

Table 1  Keywords information in biochar adsorption for wastewater treatment

Ranking Number of 
nodes

Mean contour 
value

Average year Main content

0 33 0.881 2012 Magnetic biochar Graphene oxide Pb(II)

1 27 0.931 2012 Tetracycline Hexavalent chromium Nanoparticle

2 22 0.964 2012 Heavy metal Cadmium Zinc

3 21 0.981 2012 Degradation Dye Desorption

4 21 0.91 2011 Adsorbent Methylene blue Kinetics

5 19 0.955 2012 Temperature Behavior Steam

6 17 0.98 2012 Biochar Charcoal Organic matter

7 16 0.92 2012 Biosorption Crop residue Slow pyrolysis

8 12 0.915 2012 Adsorption Mechanism Copper

9 12 0.966 2012 Pyrolysis Nitrogen Manure
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with time, implying the reducing degree of attention. For 
example, heavy metal and nitrogen clustering have grad-
ually ceased since 2015.

Research trend
The time-series analysis of keyword frequency can reveal 
the pattern of research hotspots and help to understand 
the evolution of research hotspots of biochar adsorption 
of wastewater, to provide new insights into its develop-
ment trend and future direction [79]. In Table 2, the blue 
line represents the time interval between emergence and 
termination, whereas the red line represents the time 
interval from the onset to the end of the hotspot [80]. 
Intensity denotes the intensity of the keywords. The 
higher the keyword intensity, the higher the search inten-
sity and the greater the number of realizations in that 
period [81–83].

“Soil” is a term that emerged from 2012 to 2017, and 
a large number of articles have been published, and the 
duration is very long, showing that its contents are rich 
enough to be worth studying by researchers. Its main 
content is biochar’s use as a soil improver [84–86]. It is 
worth paying attention to the keywords “black carbon”, 
“cadmium”, “biosorption”; and “phosphate”, their search 
intensities were 14.04, 13.75, 18.46 and 11.43, respec-
tively. These four keywords are characterized by the fact 
that word emergence is brief, but their research intensity 
is high, and article publication is very high. The contents 

explore carbon structure, and the influence of carbon 
structure on pollutant adsorption [87, 88], adsorption of 
cadmium by different modified biochars [89], adsorption 
characteristics and mechanism of modified biochar on 
Cr(VI) [90], and study on recovery of phosphate by modi-
fied biochar [91, 92]. In addition, in the research timeline 
of biochar adsorption of wastewater, there are also many 
short-term hot research contents such as tetracycline, 
biochar adsorption of copper, and biochar adsorption of 
Pb(II) [93–97]. The outcome implies that research hot-
spots in this field are evolved very rapidly, and scholars 
should pay attention to the developmental content of 
their field over time to capture key foci of inquiry. Cur-
rently, the most recent keywords for research hotspots 
are “dye”, “effective removal”, “composite”, and “tempera-
ture”, from which we can see that recent research hot-
spots of wastewater biochar adsorption focus primarily 
on the use of biochar for adsorbing pollutants into dyes, 
and synthetic biology effect of carbon temperature on 
pollutant adsorption [98–101].

Biochar adsorption of pollutants in wastewater
Application of biochar in different types of wastewater 
treatment
Wastewater can be divided into industrial wastewater, 
urban wastewater, agricultural wastewater and rainwa-
ter [102]. Biochar in the traditional sense is produced 
by direct pyrolysis of organic matter, such as pure straw 

Fig. 4  Timeline visualization of the clusters
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biochar [103] and pure sludge biochar [104]. Biochar 
is obtained by biomass pyrolysis in an oxygen-free or 
-limited environment. Indeed, the thermochemical 
process of pyrolysis produces three coproducts of bio-
char, bio-oil, and syngas [105–107]. Thus, the biochar’s 
yield and physicochemical properties are not only 
affected by the raw materials, but also by the pyrolysis 
temperature and modification method [108]. In exist-
ing research, the preparation of commonly modified 
biochar is shown in Fig.  5. In the process of biomass 
pyrolysis, to transfer heat evenly during the pyrolysis 
process, bulky and large size biomass materials are usu-
ally pulverized into small particles, thereby facilitating 
the production of particles with pores of different sizes 
during biomass pyrolysis (from nanometer to centime-
tre-sized particles) [109].

Industrial wastewater comes from various sources, 
including mining, smelting, battery manufacturing, 
chemicals, leather manufacturing, dyes, etc., and which 
pollutants are mainly heavy metals and organic pollut-
ants [110]. Currently, biochar has been used in the treat-
ment of industrial wastewater, mainly for the adsorption 
of heavy metals and organic dyes [111]. The adsorption 
process is related to the pH of the medium, contact time 
and dosage.

Biochar can be used directly or combined with tech-
nologies such as biological filters for urban sewage 
treatment. It can recover unstable nitrogen and phos-
phorus, and can also remove ammonia nitrogen in urban 
wastewater [112]. The study found that biochar derived 
at 450  °C had the highest ammonia nitrogen removal 
capacity, with 1.2  mg of NH4-N removed per g of bio-
char, which was attributed to its higher surface area and 
functional group density, and the process was driven by 
chemical adsorption control [113].

Many researchers have applied biochar and its modi-
fied forms to treat agricultural wastewater pollution. The 
adsorption capacity of biochar to pesticides is related 
to biochar raw materials, functional materials and tar-
get pollutants [114]. On the other hand, biochar also 
has good adsorption effects on toxic heavy metals such 
as arsenic, chromium, copper and lead in agricultural 
wastewater. Through the above research, it can be found 
that biochar has broad application prospects for the 
adsorption treatment of heavy metal ions in water [115].

Stormwater runoff can significantly degrade natu-
ral water quality and require treatment prior to dis-
charge, primarily due to increased concentrations of 
metals, organic matter, and biological contaminants 
[116]. Biochar and its modified forms have been used 

Table 2  Burst word data for biochar adsorption for wastewater treatment keywords

Keywords Strength

Year

2011–2022First 
noted

Burst

Onset End
Soil 19.57 2011 2012 2017

Biosorption 18.46 2011 2018 2019

Black carbon 14.04 2011 2016 2017

Cadmium 13.75 2011 2017 2018

Remediation 11.85 2014 2020 2020

Hydrothermal carbonization 11.81 2011 2020 2020

Phosphate 11.43 2014 2018 2018

Zero valent iron 11.39 2014 2019 2022

Graphene oxide 10.76 2018 2020 2020

Recovery 10.06 2013 2020 2020

Black carbon 9.86 2011 2016 2017

Tetracycline 8.38 2016 2016 2017

Water treatment 8.26 2020 2020 2022

Fast pyrolysis 8.09 2012 2016 2017

Tetracycline 7.61 2016 2016 2017

Lead 7.49 2011 2016 2017

Pb(ii) 6.7 2014 2018 2018

Dye 5.64 2011 2020 2022

Copper 5.02 2013 2017 2017
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in stormwater treatment systems as effective media. 
In addition, biofilter/bioretention systems containing 
biochar are also effective in removing microorganisms 
from stormwater [117]. The various removal capabilities 
of pollutants from stormwater depend on the nature of 
the biochar, the characteristics of the pollutants, and the 
chemistry of the water.

Biochar adsorption of heavy metals in wastewater
Heavy metals in wastewater have adverse effects on 
humans, animals and plants. Studies have shown that 
biochar can effectively adsorb heavy metal ions in waste-
water [118]. The removal mechanisms of heavy metals in 
water by biochar adsorbent mainly involve ion exchange, 
precipitation and complexation. Surface adsorption is 
also a mechanism for heavy metal removal [119]. As 
shown in Fig. 6a, the surface of biochar is usually nega-
tively charged, providing effective adsorption sites for 
electrostatic attraction of heavy metal ions [120]. The 
efficient removal of heavy metals by biochar is the syn-
ergistic effect of multiple reaction mechanisms, mainly 
surface complexation of functional groups, surface pre-
cipitation, ion exchange and electrostatic attraction 
[121]. Ion exchange is the exchange of organic oxygen-
containing functional groups such as hydroxyl and car-
boxyl groups on the surface of the biochar adsorbent with 
different anions and cations to achieve the purpose of 
removing these ions. Chemical precipitation is the most 
established and commonly used treatment technology 
for separating heavy metals from aquatic environments 

[122]. Complexation refers to the process of forming 
a complex between metal ions and organic functional 
groups on the surface of the biochar adsorbent, such as 
oxygen-containing functional groups such as hydroxyl, 
carbonyl and carboxyl groups.

Compared with other treatment technologies, adsorp-
tion technology has a significant effect in removing heavy 
metals from water, even at lower metal ion concentra-
tions. The feasibility, simplicity of adsorbent preparation 
and better regeneration behaviour has made them a bet-
ter choice [123]. This low-cost adsorption method can 
effectively separate toxic metals from aqueous solutions. 
Compared with existing activated carbon, these biochar 
approaches have the advantages of economical, efficient, 
good adsorption capacity, regeneration, and reuse of 
recovered metals, no secondary pollution, antibacterial 
properties and easy handling [124].

Biochar adsorption of inorganic salt in wastewater
Increased concentrations of nutrients such as phos-
phates, nitrates, and ammonium can cause serious envi-
ronmental problems to the ecosystem [125]. For example, 
they will promote the growth of photosynthetic organ-
isms, cause eutrophication of aquatic ecosystems, and 
lead to water quality degradation [126]. Among vari-
ous low-cost adsorbent materials, biochar shows strong 
potential as an environmentally friendly adsorbent. The 
adsorption of inorganic salts in wastewater by biochar 
depends on the properties of the biochar (Fig. 6b), such 
as surface groups, porous structure, mineral composition 

Fig. 5  Simplified process scheme of common modified biochar preparation
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and loaded active ingredients. The adsorption mecha-
nism includes surface functional group interaction, 
electrostatic interaction, surface co-precipitation and 
complexation, and hydrogen bonding [127].

Taking phosphate as an example, the adsorption mech-
anism of phosphate by biochar is mainly determined by 
the specific surface area, functional groups and metal ion 
composition of biochar [128]. Biochar has rich micropo-
rous structure and large specific surface area, which can 
provide active adsorption sites for phosphate ions. Physi-
cal deposition will occur when phosphate ions diffuse to 
the surface of biochar. The organic functional groups on 
the surface of biochar –OH, –COOH, C–H, C=O [129], 

–NH2 and –NO2 [130] can combine with phosphate 
ions. In addition, when the surface of biochar contains 
oxides or hydroxides of metal elements such as Ca and 
Mg, phosphate will also undergo chemical adsorption 
on the surface of biochar [131]. For example, Park et al. 
[132] reported that CaO or Ca(OH)2 on the surface of 
crayfish biochar combines with phosphate ions to form 
hydroxyapatite (HAP).

Biochar adsorption of organic pollutants in wastewater
In recent years, organic matter pollution in water has 
become severe. Common organic pollutants include but 
not limited to dyes and antibiotics [133]. Biochar has also 

Fig. 6  Mechanisms of biochar adsorption of pollutants in wastewater. a Mechanisms of biochar adsorption of heavy metals. b Mechanisms 
of inorganic salt adsorption by biochar. c Mechanisms of tetracycline adsorption by biochar
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been proven to have significant adsorption or degrada-
tion effects on organic pollutants in water. Dyes are one 
of the organic pollutants discharged into wastewater by 
industries such as leather, pharmaceutical, textile, paint, 
and paper [134]. They have complex organic structures 
that can cause health problems related to the skin, gas-
trointestinal tract, and lungs [135]. In addition, when 
dyes are released into water bodies, they could increase 
chemical oxygen demand and interfere with the light 
penetration of water bodies, thus causing severe damage 
to the living environment of aquatic animals and plants 
[136]. Therefore, dye compounds need to be removed or 
converted into harmless substances. Research has found 
that biochar can effectively remove dyes with different 
chemical structures [137]. Typically, hydrogen bonds 
are formed between the biocchar’s oxygen-containing 
functional groups and the dye functional groups to play 
the adsorption performance. The dye removal mecha-
nisms of biochar also involve electrostatic attraction and 
π–π interaction. The exact removal mechanisms differ 
depending on the type of dye molecules and their inter-
action with the specific biochar used.

The emerging contaminants antibiotic are widely used 
clinically in animals and humans to prevent and treat 
diseases. Due to the low metabolism of antibiotics and 
their carcinogenic, teratogenic, mutagenic or hormonal 
effects, their discharge into the environment through 
water bodies could cause ecological disasters [138]. The 
adsorption mechanisms of biochar to antibiotic pollut-
ants determined by the surface functional groups, the 
specific surface area of biochar and the nature of the 
pollutants [139]. As shown in Fig.  6c, its main adsorp-
tion mechanisms are surface complexation, electrostatic 
attraction and hydrogen bonding, followed by multi-layer 
mechanisms such as pore filling and π–π interaction.

Factors affecting the performances of biochar to adsorb 
pollutants in wastewater
In addition to the biochar’s characteristics as discussed 
aforenoted, the number of cycles of biochar re-use can 
also have a great impact on its adsorption performance 
[140, 141]. Recyclability performance is an important 
indicator for evaluating the cost-effectiveness of adsor-
bents and is also a consideration for large-scale applica-
tions [142]. As the number of re-use cycles increases, the 
decrease in adsorption rate may be related to factors such 
as the loss of the adsorbent itself, the reduction in pore 
volume and specific surface area, and the reduction in the 
number of its functional groups. Although the adsorp-
tion capacity decreased slightly after several cycles, its 
recovery and removal rates were still high, indicating that 
biochar has good recyclability and practical application 
potential.

The adsorption capacity of biochar to pollutants is 
affected by numerous factors, such as the pH of the solu-
tion, the concentration of adsorbent, and temperature. 
Research found that the pH of the solution impacts the 
physical and chemical properties, distribution character-
istics and adsorption efficiency of biochar. Temperature 
is also one of the factors affecting biochar adsorption 
[143]. The temperature difference will have a significant 
impact on the morphological distribution and adsorption 
mode of pollutants in wastewater on the adsorbent, thus 
impacting the removal effect of pollutants. During the 
adsorption process of pollutants by biochar adsorbents, 
due to different types of adsorbents and adsorption 
mechanisms, the heat generated will also be different, 
resulting in insufficient ion exchange reactions between 
the functional groups of the adsorbents and pollutants. 
Therefore, it has a greater impact on the adsorption effect 
[144]. The adsorption capacity of biochar to pollutants is 
generally also related to the amount of biochar. Increas-
ing the dosage can increase the adsorption capacity of 
pollutants. In the adsorption and desorption process, 
it is generally affected by the type of desorption liquid, 
desorption concentration, desorption temperature and 
desorption time [145]. In related research on desorption 
and regeneration, it was also found that the direct sol-
vent method has the problem of poor desorption effect. 
Therefore, some studies use other methods combined 
with solvent methods, and the regeneration performance 
of the adsorbent is improved, including microwave meth-
ods, high-temperature roasting, ultrasonic methods, and 
microbial methods [146].

Summary and prospect
In this paper, a scientometric approach using CiteS-
pace software was used to analyze articles on biochar 
adsorption for wastewater treatment published in 
the past 12  years (2011–2022). There have been 2673 
journal articles in the last 12 years related to the field. 
China is the most active contributor to research, pro-
ducing the largest number of publications of any coun-
try, with the Chinese Academy of Sciences playing a 
crucial role in advancing this technology. Yong Sik 
Ok (Korea) was the authors who amassed the greatest 
numbers of published articles in biochar adsorption 
for wastewater treatment. Recent research hotspots 
suggest that heavy metal adsorption by magnetic bio-
char has received significant attention. This review has 
found that the synthesis temperature for more effective 
biochar preparation can be investigated in depth in the 
future. The adsorption properties of modified biochar 
can be utilized for the adsorption of dyes, tetracyclines 
and some new pollutants. Future research should focus 
on optimizing various parameters in the production 
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process of biochar to improve the adsorption capacity 
of biochar. Experiments on the modification of various 
methods and materials can be carried out and applied 
to practical projects.

The adsorption mechanisms of biochar for different 
pollutants are not completely consistent. The adsorp-
tion mechanisms of heavy metals are mainly surface 
complexation, surface precipitation, ion exchange and 
electrostatic attraction. The adsorption mechanism 
of inorganic salts is mainly surface functional group 
interaction, electrostatic interaction, surface co-pre-
cipitation and complexation. The removal of dyes is 
mainly electrostatic attraction and hydrogen bonding; 
the removal of antibiotics is mainly surface complexa-
tion, electrostatic attraction and hydrogen bonding. 
Studying the adsorption mechanism is of great signifi-
cance for exploring the properties and applications of 
adsorbents, which also can provide a theoretical basis 
for efficiently removing different types of pollutants. At 
present, further research is needed on biochar waste-
water treatment technology, especially in industrial 
wastewater and urban sewage treatment. The results 
of the work in this paper may contribute to solving the 
practical problems of pollution of the water environ-
ment and improving the quality of the environment, 
thus reducing the risk of pollution to human health and 
living quality. While this research leveraged CiteSpace 
for its analysis, it is important to note some software 
limitations, such as challenges in consolidating dif-
ferent author name formats and keyword synonyms. 
Addressing these issues is crucial for more accurate 
analyses in future.
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