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Abstract 

Background  The fish embryo acute toxicity (FET) test with the zebrafish (Danio rerio) was developed to assess 
the acute fish toxicity of chemicals or environmental samples as a replacement for the Acute Fish Test (AFT) with juve-
nile fish. However, the FET is not yet established in the regulatory context. One reason is the (postulated) difference 
between the biotransformation capacities of embryos and juvenile fish.

The present study was designed to develop a procedure for external metabolization of test substances prior to testing 
in the FET. The workflow allows simultaneous exposure of the embryos to the maternal substances and their potential 
metabolites throughout the entire exposure period. After a 2 h incubation of the samples at 37 °C with non-toxic con-
centrations of a rat liver S9 homogenate or an animal-free (ewoS9R) metabolization system, freshly fertilized zebrafish 
embryos are added and incubated up to 120 h post-fertilization at 26 °C. Five biotransformable model substances 
(allyl alcohol, benzo[a]pyrene (B[a]P), chlorpyrifos (CP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and bisphenol 
A (BPA)) were evaluated for embryotoxicity with and without external metabolization.

Results  Only for allyl alcohol, external metabolization with both rat S9 and ewoS9R resulted in significantly higher 
embryotoxicity than under non-premetabolized conditions and, thus, in a better correlation of FET and AFT data. 
For B[a]P, CP, TDCPP and BPA, there was no relevant difference between data derived from the FET (with and with-
out pre-metabolization) and literature AFT data; even though the FET results with and without pre-metabolization 
differed significantly for BPA (with rat S9 and ewoS9R) and TDCPP (rat S9 only).

Conclusions  External pre-metabolization appears a promising add-on to the FET protocol to improve the correla-
tion with AFT data of certain biotransformable substances and might help to strengthen the FET as an alternative 
to the AFT and finally to reduce or replace sentient animals used for acute fish toxicity data in the regulatory context.
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Graphical Abstract

Background
The acute fish test (AFT), according to OECD TG 203 [1], 
is commonly used in the regulatory context to screen for 
acute toxic effects in aquatic environments [2, 3]. Aquatic 
toxicity assessment is, therefore, deeply anchored in 
national and EU legislation. Acute fish data generated 
with juvenile fish are not only required for the registra-
tion of industrial chemicals exceeding production of 10 
tons per year [4, 5], for plant protection products [6], 
veterinary medicines [7], biocides [8] and feed additives 
[9], but also for environmental monitoring, e.g., in the 
context of the European water framework directive [10]. 
As a consequence, the frequent application of OECD TG 
203 [1] leads to a very high number of vertebrate experi-
ments, which is not compatible with the 3Rs principle of 
replacing, reducing and refining animal experiments [11] 
and the increasing trend towards improvement of animal 
welfare in animal experimentation [12].

Therefore, the alternative new approach method 
(NAM) “fish embryo acute toxicity (FET) test” with 
zebrafish (Danio rerio) embryos according to OECD TG 
236 [13] was developed as a substitute to the AFT [14–
19]. Given that, in legal terms, embryos are not regarded 
as a protected life stage until they are self-feeding [20, 
21], which for zebrafish happens from 120 h post-fertili-
zation (hpf) [12], the FET is classified at least as a refine-
ment, if not as a replacement to the AFT in the sense of 
Russel and Burch [11]. In various studies, a very good 
correlation between LC50 values from the FET and AFT 
has been reported [14, 18, 22–24].

However, the FET is still not accepted as a sole alter-
native to the AFT in most regulatory applications [25], 
except in waste water testing in Germany according to 
ISO 15088 [26]. One frequent argument is the assump-
tion that embryos do not possess full metabolization 

capacities compared to juvenile fish relevant in AFT 
testing [27, 28]. Limited metabolization capacities of the 
embryo, however, could lead to an under- or overestima-
tion of toxicity due to biotransformation processes cata-
lyzed by various metabolization enzymes. In particular, 
one group of phase I metabolism enzymes mainly pre-
sent in the liver, the cytochrome P450 monooxygenases 
(CYPs), are most important for bioactivation and detoxi-
fication processes as they are capable of catalyzing both 
oxidation and reduction reactions with broad substrate 
specificity, whereby the different CYP subfamilies have 
varying capacities for bioactivation and detoxification 
[29, 30].

There are various approaches across different levels 
of biological organization available to study and com-
pare metabolic capacities of zebrafish at different devel-
opmental stages. However, due to the differences of 
applied methods and the still limited number of studies 
on embryonic and juvenile fish [27, 31], the compari-
son of metabolic capacities between zebrafish embryos 
and juveniles remains problematic. One method for the 
evaluation of metabolism differences is the consideration 
of the expression, biosynthesis and activity of metabolic 
enzymes. In a recent review, Loerracher and Braunbeck 
[31] pointed out that—whenever looked at in detail—all 
CYP activities could be demonstrated in the zebrafish 
embryo so far. However, in general, CYP activities [32–
37] are comparatively low in Danio rerio up to 72/96 hpf 
compared to later larval developmental stage or in juve-
nile fish. More specifically, other studies by Verbueken 
et  al. [37] and Otte et  al. [38] demonstrated albeit low, 
but in some cases even constitutive CYP1A activity from 
the very beginning of zebrafish embryonic development. 
Another method to differentiate metabolism capacities is 
to study effects of individual pro-toxicants. In case of allyl 
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alcohol, a drastic discrepancy between AFT and FET data 
is evident and could clearly be attributed to metabolic 
enzyme deficiency in zebrafish embryos [39].

To compensate for potential differences in metabolic 
capacities of zebrafish embryos and juveniles, previous 
studies included mammalian metabolic systems (rat liver 
microsomes) into the FET which incubated together with 
the fish eggs for a limited time of 1–4  h at 32  °C [40–
42]. Due to the embryotoxicity of the microsomes [43], 
embryos could only be exposed for a limited time span 
before transfer to fresh medium for the further test dura-
tion, which ended at 48–144 hpf. In contrast, the present 
study was designed to clearly separate pre-metaboliza-
tion at optimal mammalian temperature (37  °C) from 
exposure of the zebrafish embryos for a full exposure 
duration up to 120  hpf at 26  °C. Thus, from the very 
beginning of the assay, not only the maternal substances, 
but also potential metabolites can be tested for embryo-
toxicity. In addition, incubation of the embryos at tem-
peratures above 26  °C can therefore be avoided, which 
might represent an additional stressor (besides exposure 
to the sample and metabolization enzymes).

In contrast to the studies mentioned above, the pre-
sent study uses S9 homogenates instead of microsomal 
fractions, since the omission of one centrifugation step 
during production results in the persistence of cytosolic 
enzymes in addition to microsomal enzymes [44]. For 
comparison, two different S9 homogenates are used: A 
conventional rat liver homogenate chemically induced 
with phenobarbital/β-Naphthoflavone by ICCR (Roß-
dorf, Germany) is applied (rat S9), established in several 
in  vitro assays (for example in mutagenicity and geno-
toxicity testing according to OECD TG 471 [45] and 
OECD TG 487 [46]). However, conventional rat liver 
homogenates (microsomes or S9) suffer from various 
shortcomings: (1) given that they originate from animal 
experiments, there is a conflict with the idea to establish 
the FET as an alternative to animal testing in the context 
of 3R and (2) the composition and activity (and toxicity) 
of rat liver homogenates may differ considerably even 
between batches from the same supplier [47]. To over-
come the problem of animal experimentation for the 
production of S9 products, we also test an animal-free, 
biotechnologically produced S9 (ewoS9R, EWOMIS, 
Bruchköbel, Germany) produced under-defined condi-
tions from suspensions of rat-derived liver cells cultured 
in chemically defined medium without animal-derived 
supplements such as fetal bovine serum. Comparable to 
the induction of rats for the production of conventional 
S9 products, rat liver cells are treated in vitro with chemi-
cal inducers to stimulate phase I metabolism with spe-
cial focus on CYP1A activity. The subcellular fraction 
ewoS9R fraction is obtained by cell harvesting, washing, 

homogenization and using the supernatant after centrifu-
gation at 9000g.

As model pro-toxicants, allyl alcohol, benzo[a]pyrene 
(B[a]P), chlorpyrifos (CP), tris(1,3-dichloro-2-propyl) 
phosphate (TDCPP) and bisphenol A (BPA) are selected 
to evaluate the effects of rat S9 and ewoS9R, since all of 
these substances are metabolized via liver enzymes. The 
industrial chemical allyl alcohol is bioactivated via the 
cytosolic alcohol dehydrogenase 8a to the more toxic 
metabolite acrolein [39, 48, 49]. B[a]P, a polycyclic aro-
matic hydrocarbon, can be oxidized via microsomal 
CYP1A1/1A2/1B1 enzymes to various metabolites with 
genotoxic or endocrine disrupting properties [50–53]. 
The insecticide CP can be either bioactivated to the neu-
rotoxic chlorpyrifos-oxon or detoxified to 3,5,6-trichloro-
2-pyridinol via CYP2B6, 3A4, 2C19 and 1A2 activity 
[54–57]. TDCPP, an industrial chemical, is bioactivated 
by CYP2E1, 2D6, 1A2 and 2C19 present in liver S9 
homogenates [58–60] to metabolites with elevated muta-
genic activity after appropriate bioactivation [61]. The 
industrial chemical BPA is converted via CYPs 1A2, 2C8, 
2C9, 2C18, 2C19, 2D6, 2E1, 3A4, and 3A5 [62–64] to 
various metabolites with differential biological activity: 
Yoshihara et al. [65] and Jaeg et al. [66] showed that BPA 
is bioactivated by rat and mouse liver S9 to estrogenic or 
cytotoxic metabolites, whereas other studies reported 
lower estrogenic activity after metabolization [67] and 
lower acute toxicity of BPA metabolites in daphnids [68], 
if compared with the unmetabolized BPA.

To evaluate the external pre-metabolization, the pre-
sent study will (a) identify optimal exposure concen-
trations not affecting embryonic development of both 
metabolization systems (rat S9 and ewoS9R) including 
the critical energy carrier β-dihydronicotinamide–ade-
nine dinucleotide phosphate (NADPH), necessary for 
CYP activity [69] and (b) assess the metabolism capacity 
of both S9 homogenates exemplary for CYP1A1/1A2/1B1 
activity via the fluorescence-based EROD assay [70–73]. 
Furthermore, embryotoxic effects of five biotransform-
able model substances with and without pre-metaboli-
zation will be evaluated for toxicity changes and whether 
external pre-metabolization in the FET increases the 
comparability of FET to AFT literature data, which could 
contribute to the acceptance of FET data and, thus, the 
refinement or even replacement of whole animal testing 
in regulatory aquatic (eco)toxicology.

Methods
Materials and stock solutions
Details on the origin of chemicals and materials used can 
be found in the Additional file  1: Tables S1–2, respec-
tively. Stock solutions of benzo[a]pyrene (B[a]P, 0.25–
10 mM), bisphenol A (BPA, 5–40 mM), chlorpyrifos (CP, 
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1–100  mM) and tris(1,3-dichloro-2-propyl)phosphate 
(TDCPP, 0.1–33 mM) were prepared in dimethyl sulfox-
ide (DMSO) and stored in brown-glass vials at 4 °C. Allyl 
alcohol was used as a liquid without solvent [54, 57]. The 
β-dihydronicotinamide–adenine dinucleotide phosphate 
(NADPH) stock solution (20  mM) was prepared freshly 
for each test day in artificial water (294  mg/L CaCl2, 
123  mg/L MgSO4, 63  mg/L NaHCO3, 5.5  mg/L KCl, 
according to ISO 15088 [26]). Artificial water was pre-
pared 1 day before each test day and aerated for at least 
1 h; the pH was adjusted to 7.8 ± 0.2.

The rat S9 (protein concentration 33  mg/ml) was 
obtained from male rats (Wistar, ICCR, Roßdorf, Ger-
many), which were induced by triplicate oral admin-
istration of 80  mg/kg body weight phenobarbital and 
β-naphthoflavone on 3 consecutive days. The rat S9 was 
stored at -80  °C and thawed maximum twice. The lyo-
philized ewoS9R was produced from a permanent rat 
liver cell line cultivated in an animal-reagent-free culture 
medium, and the cells were induced with CYP1A acti-
vators. One vial of lyophilized ewoS9R (stored at room 
temperature) was dissolved in 469  µl artificial water on 
the test day to adjust the resulting protein concentration 
to 4 mg/ml.

Zebrafish maintenance and egg production
Adult zebrafish (wild-type Danio rerio, age of 1–2 years) 
from the facilities of the Department of Evolutionary 
Ecology and Environmental Toxicology (Goethe Uni-
versity Frankfurt) were kept in 170  L aquaria with a 
flow-through system using remineralized osmosis water 
(26 ± 1  °C, water exchange rate of 30% per week, rem-
ineralization with NaHCO3 and sea salt (Aquaforest, 
Brzesko, Poland). The tank water was purified by UV-
light and a biological filter. The zebrafish were fed with 
dry food (zebrafish SDS, Claus GmbH, Limburgerhof, 
Germany) twice a day and Artemia sp. (Sanders® Great 
Salt Lake; Ogden, Utah, USA) once a day. A constant 
day/night rhythm was maintained at 14/10 h. Plant imi-
tates (weathered inert green filter material) and spawn-
ing trays prepared with 1 mm spawning grids were used 
for egg collection. Mass spawning with 150–200 fish was 
applied for egg production. Courtship and oviposition 
began about half an hour after the onset of light, and fer-
tilized eggs were collected at latest 1 h after the onset of 
spawning.

Fish embryo acute toxicity (FET) test 
without metabolization
The fish embryo acute toxicity test was performed in a 
static setup according to OECD TG 236 [13] and Schiwy 
et al. [74] with the minor modifications mentioned below. 
Effects and lethality (for endpoints, see Additional file 1: 

Table S3) were recorded at 48 and shortly before 120 hpf. 
The test was terminated shortly before 120 hpf, and fish 
were euthanized by immersion in benzocaine (40 g/L in 
96% ethanol).

Test substances were first examined in a standard 
FET to generate reference data. Therefore, the follow-
ing assay concentration ranges were used: allyl alcohol 
0.5–5,000  µM, B[a]P 0.25–10  µM, BPA 5–40  µM, CP 
1–100  µM and TDCPP  0.1–33  µM. Test solutions were 
prepared by diluting stock solutions with artificial water 
in glass crystallizing dishes. For B[a]P, BPA, CP and 
TDCPP, a final DMSO concentration of 0.1% (v/v) was 
used. From the crystallization dishes, 10 fertilized eggs 
per test solution were transferred to glass-coated 96-well 
plates (due to hydrophobicity of the test substances) 
filled with 200 µl of test solution and sealed with a gas-
permeable foil. Due to its liquid, hydrophilic and volatile 
properties, no solvent was necessary for allyl alcohol; and 
polystyrene well plates were double-sealed with polyester 
cover foils to minimize evaporation. Each test was com-
plemented with artificial water as a negative control, 0.1% 
DMSO as a solvent control and 4 mg/L 3,4-dichloroani-
line as a positive control. The embryos were incubated at 
26 ± 1 °C until 120 hpf with a light/dark cycle of 14/10 h.

Fish embryo acute toxicity (FET) test with external 
pre‑metabolization
Range-finding experiments were carried out to iden-
tify optimal concentrations of rat liver S9, ewoS9R and 
NADPH for external metabolization, for a detailed 
description, see Additional file 1: Method M1. For the 
metabolization with S9 homogenates, exposure solu-
tions were prepared in crystallization dishes (B[a]P, 
BPA, CP and TDCPP) or in 6- or 24-well plates (allyl 
alcohol) with the same concentration ranges as men-
tioned above. In addition, 0.5 mM NADPH in combi-
nation with 0.01 mg/ml rat S9 or 0.05 mg/ml ewoS9R 
were added to the test solutions. The S9 homogen-
ates were kept on ice when not in use. Dishes and well 
plates were sealed with parafilm® or polyester cover 
foils, respectively, and incubated for 2  h on a shaking 
incubator at 37  °C (optimal temperature for mamma-
lian enzymes). Runs with 0.1% DMSO were added as a 
process control and two S9 homogenate process con-
trols (0.1% DMSO + 0.5 mM NADPH + 0.01 mg/ml rat 
S9 or 0.05 mg/ml ewoS9R) were included in the metab-
olization step. After metabolization, the solutions were 
acclimated to 26  °C before transferring the fertilized 
eggs for the FET exposure solutions. The tests with 
pre-metabolization were carried out as described for 
the tests without pre-metabolization. All experiments 
were performed in 3–4 independent biological repli-
cates. All data presented originated from experiments, 
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which met the validity criteria set by OECD 236 [13]: 
with < 10% mortality in negative, solvent and process 
controls as well as > 30% mortality in the 3,4-dichloro-
aniline positive control at 120 hpf and ≥ 80% hatching 
rate in the negative and solvent control at 120 hpf.

For data analysis, concentration–response curves 
were generated using a non-linear regression model 
(least squares fit, variable slope, four parameters, con-
strains of bottom = 0% and top = 100%) in the software 
GraphPad Prism 9 (GraphPad Software, Boston, USA). 
The statistical comparison of concentration–response 
curves was carried out using an extra-sum-of-squares 
F test with a p value of 0.025 for two pairs of analy-
sis (or 0.0083 in the case of BPA with four pairs of 
analysis). The statistical significance of different curve 
parameters (EC50 and hillslope) was calculated to 
compare the treatments including the metabolization 
via rat S9 or ewoS9R with the experiments without 
metabolization. If 50% effect could not be generated in 
the concentration–effect curves, only hill slopes were 
compared statistically between the treatments.

Impact of S9‑proteins on bioavailability of chemicals
To evaluate whether the addition of S9 homogenates 
had an impact on the bioavailability of the test com-
pounds, a case study with BPA was conducted. The 
FET methodology was conducted as described above 
without the energy source NADPH, but with the S9 
homogenates. If similar embryotoxicities between 
approaches with and without NADPH were observed, 
this indicated binding of the model substance to the S9 
proteins, but no detoxification via the metabolization 
enzymes.

Biochemical determination 
of ethoxyresorufin‑O‑deethylase (EROD) activities
To compare the CYP1A1/1A2/1B1 activities of the S9 
homogenates, an EROD assay was conducted according 
to Donato and Gómez-Lechón [71]. In brief, 10 µM eth-
oxyresorufin, 100  µM dicumarol, 0.5  mM NADPH and 
0.01  mg/ml rat S9 or 0.05  mg/ml ewoS9R were mixed 
in artificial water in a final volume of 200 µl in a 96-well 
plate. Assays were conducted under light-reduced set-
tings to account for the light sensitivity of ethoxyresoru-
fin. The S9 homogenates were stored on ice and were 
added immediately before the start of the measurement. 
In addition, a negative control (artificial water, 10  µM 
ethoxyresorufin, 100  µM dicumarol, 0.5  mM NADPH) 
without S9 homogenates was included for each test. The 
fluorescence at excitation/emission wavelengths of Em: 
588  nm/Ex: 635  nm was measured kinetically for 4.5  h 
with a Spark multimode plate reader (Tecan, Crailsheim, 
Germany) pre-heated to 37  °C. The test was carried out 
in 3 biological replicates and 3 technical repetitions. 
Mean (calculated from 3 biological replicates) in relative 
fluorescent units (RFUs) measured with S9 homogen-
ates minus the RFUs of the negative control were plotted 
against time.

Results
The range-finding experiments for the pre-metaboliza-
tion step (Fig.  1 and Additional file  1: Fig. S1) revealed 
that 3.5  h incubation at 37  °C with a combination of 
0.5  mM NADPH together with 0.01  mg/ml rat S9 or 
0.05  mg/ml ewoS9R did not produce any symptoms of 

Fig. 1  Identification of optimal pre-metabolization conditions: Effects [%] in the FET with Danio rerio at 120 h post-fertilization (hpf ) after incubation 
at 37 °C with different NADPH-concentrations and different rat S9 (A) oder ewoS9R (B) concentrations for 3.5 h before addition of zebrafish eggs. 
Dotted lines indicate 10% effect (considered the non-effect threshold according to OECD TG 236). Data given as mean values ± standard deviation 
from independent biological replicates (n = 3–4). 0 = no effects detected, x = experiment not conducted
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lethal and sublethal toxicity in the FET (≤ 10% effects at 
120 hpf).

In these settings, both S9 homogenates clearly showed 
an EROD activity (Fig.  2 and Additional file  1: Fig. S2). 
The amount of resorufin formed increases with the addi-
tion of both S9 homogenates over the 4.5-h period. Both 
S9 homogenates show a steeper slope within the first 2 h 
followed by a gradual levelling off. The increase in EROD 
activity relative to the negative control was higher with 
rat S9 (relative fold-increase over controls: 39.1) than 
with ewoS9R (fold-increase: 3.8).

In FET experiments amended with external pre-metab-
olization, the effects after 48  hpf (Additional file  1: Fig. 
S5) and 120  hpf (Fig.  3) for the five model substances 
were recorded with and without metabolization. The 
calculated EC50 values are shown in Additional file  1: 
Table S4. At the end of the FET tests (120 hpf), resulting 
embryotoxicity was significantly different after metabo-
lization for three of five model substances (allyl alcohol, 
TDCPP, BPA).

For allyl alcohol in combination with rat S9 and 
ewoS9R, a significantly higher embryotoxicity was 
observed compared to allyl alcohol without metaboliza-
tion at both 48 and 120  hpf, with metabolic activation 
being stronger with rat S9 than with ewoS9R (Fig. 3 and 
Additional file  1: Fig. S5). The most frequent effects at 
120  hpf without metabolization were coagulation and 
cardio-vascular effects; in contrast, with metabolization 
coagulation was most frequent (Additional file 1: Fig. S4).

For TDCPP, the two external metabolization system 
differed regarding their effects at both time points. At 
120  hpf, the addition of rat S9 significantly increased 
TDCPP toxicity, whereas no significant difference was 

found for ewoS9R compared to effects of the unme-
tabolized substance (Fig.  3). However, at 48  hpf (Addi-
tional file  1: Fig. S5), the difference was significant with 
both S9 homogenates, and TDCPP proved more toxic 
with ewoS9R than with rat S9. The profile of frequent 
observed effects (see SI, Additional file  1: Fig. S4) was 
similar comparing the approaches with and without 
metabolization with coagulation being the most observed 
effect. However, the percentage of cardio-vascular effects 
increased with the addition of S9 homogenates.

The implementation of S9 homogenates into the FET 
with BPA resulted in both a decrease or increase of toxic-
ity depending on time of development. At 120 hpf, addi-
tion of both S9-homogenates resulted in significantly 
lower toxicity of BPA (Fig. 3), with no hatching and car-
dio-vascular effects being the most frequently observed 
embryotoxic effects (with and without metabolization, 
Additional file  1: Fig. S4). In contrast, at 48  hpf (Addi-
tional file 1: Fig. S5), a reaction opposite to 120 hpf were 
seen, with the BPA toxicity being significantly higher 
only when adding ewoS9R compared to no addition 
metabolization.

To exclude lower toxicity due to binding to S9 homoge-
nate proteins, S9 homogenates without addition of the 
energy carrier NADPH were also tested with BPA (Addi-
tional file 1: Fig. S3). Without NADPH, the proteins of S9 
did not significantly alter the embryotoxicity, as the con-
centration–response curves were almost identical to the 
concentration–response relationship of chemical expo-
sure without any S9 addition.

For B[a]P, no significant differences were found 
between treatments without or with addition of S9 
homogenates at both 48  and 120  hpf (Fig.  3 and Addi-
tional file 1: Fig. S5). Due to precipitation at concentra-
tions > 10 µM, a full concentration–response relationship 
could not be established for B[a]P. As the overall num-
ber of effects with B[a]P was very low, no frequent effects 
were reported in Additional file 1: Fig. S4.

Likewise, for CP, no complete concentration–response 
relationship could be generated due to precipitation 
at > 100  µM, and no significant differences could be 
recorded for treatment with and without S9 homogen-
ates at 48 and 120 hpf (Fig. 3 and Additional file 1: Fig. 
S5). However, a slight increase in toxicity was evident 
when ewoS9R (48 and 120 hpf) or rat S9 (120 hpf) were 
added. Frequent effects without pre-metabolization at 
120  hpf were cardio-vascular effects, coagulation, no 
hatching as well as pericardial and yolk sac edemata 
(Additional file  1: Fig. S4). However, following addition 
of S9 homogenates, coagulation was the most frequently 
observed effect.

Fig. 2  EROD activity respresented as relative fluorescence units 
(RFUs) at measuring wavelenghts of 588/635 nm in presence 
of 0.5 mM NADPH, 100 µM dicoumarol and 0.01 mg/ml rat S9 ( −) 
or 0.05 mg/ml ewoS9R ( −), respectively. Mean and error bars show 
relative RFU values corrected for RFUs of the negative control (n = 3) 
with standard deviation
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Discussion
Pre‑metabolization for the fish embryo toxicity test (FET)
Inclusion of an external metabolization step prior to ini-
tiation of the actual FET to allow continuous exposure 

of the embryos/larvae to the metabolites bears several 
challenges:

Temperature
First, the protocol for this study was designed to 
allow optimal temperatures for each system: 37  °C for 

Fig. 3  Biotransformation potential of the two metabolization systems within the FET using Danio rerio embryos: The effects at 120 h 
post-fertilization (hpf ) of allyl alcohol (A), TDCPP (B), bisphenol A (C), benzo[a]pyrene (D) and chlorpyrifos (E) are shown with or without the addition 
of 0.01 mg/ml rat S9 and 0.05 mg/ml ewoS9R under addition of 0.5 mM NADPH. Controls contained S9 homogenates and NADPH at the same 
concentrations w/o chemicals. Data are given as means ± standard deviation (n = 3–4). Model for nonlinear regression (GraphPad Prism 9): [agonist] 
vs. response, variable slope (four parameters), bottom = 0%, top = 100%. *Significant differences of the best-fit values (hillslope, EC50) with S9 
homogenate compared to no addition of an external metabolization system
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incubation with the mammalian S9 homogenates and 
26  °C for exposure of zebrafish embryos. For mamma-
lian enzymes, 37  °C is usually the optimal temperature, 
and a lower temperature results in lower enzyme activ-
ity [75]. For zebrafish, however, higher temperatures may 
cause an acceleration of development [76], which com-
promises the comparability with FETs performed at 26 °C 
according to OED TG 236 [13] and may lead to conflicts 
with animal welfare regulations. Even more important, 
increased temperature over the entire test period might 
cause heat stress for the embryos: Although Kimmel 
et al. [76] did not detect developmental abnormalities at 
incubation temperatures up to 33 °C in zebrafish, a study 
by Long et al. [77] demonstrated altered gene expression 
using an increased temperature of 34  °C. Thus, elevated 
temperatures in the test create a third stressor in addition 
to the test compound and the addition of S9 homogen-
ates. By separating a 2 h pre-exposure at 37 °C (without 
the addition of eggs) from the FET itself (26  °C), such 
additional stress could be avoided.

Toxicity of S9 homogenates
Both the S9 homogenates and the energy source NADPH 
showed embryotoxic effects in the FET. Given that 
effects on zebrafish embryos by liver homogenates have 
also been documented in literature [43], only short 
exposure periods of embryos to high concentrations of 
microsomes (0.7  mg/ml) were performed in previous 
studies using external metabolism [40–43]. In range-
finding experiments, pre-metabolization with 1 mg/ml S9 
homogenates at 37 °C followed by removal of S9 homoge-
nates using (1) a dialysis membrane or (2) heat denatura-
tion and centrifugation to expose the embryos to the 
metabolites for 120 hpf (details not shown) did not effec-
tively eliminate the embryotoxicity of the S9 homoge-
nates. Consequently, experiments were carried out to 

optimize protein contents during pre-exposure metabo-
lization: Since the combination of the S9 homogenates 
(EC10 values: ~ 0.08  mg/ml) and the cofactor NADPH 
(EC10: 0.47  mM) proved even more toxic than the iso-
lated components (Fig.  1 and Additional file  1: Fig. S1), 
final concentrations of 0.01  mg/ml (rat S9) or 0.05  mg/
ml (ewoS9R) together with 0.5 mM NADPH were in the 
final experiments.

Species‑origin of S9 homogenates
Mammalian metabolization systems have repeatedly 
been used for the inclusion into the FET [40–42]. How-
ever, a difference between the metabolization capacities 
of mammals and fish must be considered: Given that 
freshly isolated rat hepatocytes have been described to be 
usually metabolically more competent than fish liver cells 
[78], rat homogenates were preferred. Hence, the mam-
malian metabolization within the FET could be described 
as a conservative and protective approach, but using fish 
liver homogenates (e.g., according to OECD TG 319B 
[79]) should also be tested in future studies to strengthen 
the informative value for ecotoxicology risk assessment 
(for reference, see [80–82]). Given that the FET was 
designed as an alternative method to conventional ani-
mal testing [83] in the context of the 3Rs [11], the pri-
mary goal of the present study was the supplementation 
with a biotechnological product (such as ewoS9R), a 
product that is derived completely in vitro, and not from 
animal experiments. To the best of our knowledge, bio-
technological approaches using animal-free cultures with 
fish cells have not been developed so far.

Comparison of FET (with and without metabolism) to AFT 
data
The comparison of experimental and literature-based 
FET (without and with pre-metabolization) and AFT 

Table 1  LC50 values for zebrafish (Danio rerio) exposed to the five model substances (allyl alcohol, tris(1,3-dichloro-2-propyl) 
phosphate, bisphenol A, benzo[a]pyrene and chlorpyrifos) derived from the fish embryo toxicity test (FET; experimental or literature 
data) or the acute fish test (AFT, literature data only)

The experimental LC50 values at 120 h post-fertilization (hpf ) were calculated with (w/) or without (w/o) the addition of S9 homogenates (0.01 mg/ml rat S9 or 
0.05 mg/ml ewoS9R combined with 0.5 mM NADPH). Where available, 95% profile likelihood confidence limit values are given in brackets. N.d. = not defined

FET data (Danio rerio) AFT data (Danio rerio)

LC50 (µM; own experimental data) LC50 (µM; literature data) LC50 (µM; literature data)

w/o S9 w/ rat S9 w/ ewoS9R w/o S9 References w/o S9 References

Allyl alcohol 1056.0 (n.d.) 86.5 (n.d.–103.9) 166.6 (117.4–217.8) 8230.0 [39] 4.8 [39]

Tris(1,3-dichloro-2-pro-
pyl) phosphate

5.9 (4.7–7.5) 4.8 (3.5–6.8) 5.2 (4.0–6.9) 4.4 [95] 10.6 [87]

Bisphenol A  > 40.0  > 40.0  > 40.0 35.2 [96] 43.4 [97]

Chlorpyrifos  > 100.0  > 100.0  > 100.0 3.7 [93] 2.0 [92]

Benzo[a]pyrene  > 10.0  > 10.0  > 10.0 5.1 [91]  > 396.3 [98]
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data for model substances allyl alcohol, TDCPP, BPA, 
B[a]P and CP are summarized in Table 1.

If compared to 120  hpf FET EC50 value without pre-
metabolization, allyl alcohol proved to be 9–17-fold more 
toxic in FETs after pre-metabolization with either S9 
homogenate. This significant difference can be explained 
by the presence or absence of alcohol dehydrogenases, 
which bioactivate allyl alcohol to the more toxic metabo-
lite acrolein [39, 48, 49]. In Danio rerio embryos, alcohol 
dehydrogenases are present at low levels [39], but are 
contained in rat S9 homogenates, thus demonstrating the 
ability to bioactivate allyl alcohol [84, 85]. Elevated con-
centrations of alcohol dehydrogenases were likely present 
in the rat S9 homogenate, since despite the lower protein 
content (0.01 mg/ml), the toxicity of allyl alcohol with rat 
S9 was higher than after pre-metabolization than with 
ewoS9R (0.05 mg/ml). This difference might be explained 
by the origin of the two S9 products: The biotechnologi-
cally produced ewoS9R was derived from a rat liver cell 
line, which had been induced for high CYP1A activity, 
but has never been optimized for alcohol dehydrogenase 
contents. In contrast, the rat S9 comprises various cell 
types induced with a combination of β-naphthoflavone 
and phenobarbital, which most likely stimulated a 
broader spectrum of metabolic enzymes including alco-
hol dehydrogenases.

The strong impact of bioactivation on allyl alcohol and 
hence the improvement of FET for protective risk assess-
ment becomes clear when comparing FET with AFT 
data. If the standard FET without metabolization [13] 
was used as the basis for the risk assessment, the FET 
LC50 would be 220–1715 times higher than the corre-
sponding AFT LC50. Based on the chemical safety criteria 
according to ECHA guidance [86], an assessment/safety 
factor of 1000 would be applied to acute LC50/EC50 fish 
toxicity data to determine the predicted no-effect con-
centration (PNEC). Thus, based on FET data without an 
additional metabolism, the environmental risk for allyl 
alcohol would clearly be underestimated, if compared to 
a risk assessment on the basis of the LC50 derived from 
the AFT (4.8 µM according to Klüver et al. [39]), which 
would be below or close to the calculated literature 
(8.2  µM; [39]) or experimental (1.1  µM) PNEC derived 
from FET data. With a 18–35-fold difference from AFT 
data, LC50 data from FETs with pre-metabolization pro-
vide a much better data base for calculating PNEC values 
(86.5 nM and 166.6 nM) than conventional FET data.

For TDCPP, a significant bioactivation was found in the 
FET at 120 hpf after pre-metabolization with rat S9, but 
not with ewoS9R. TDCPP is metabolized via CYPs 2E1, 
2D6, 1A2 and 2C19 [58]. Given that during ewoS9R opti-
mization, the focus was exclusively on CYP1A induction, 
the formation of the embryotoxic metabolites was likely 

lower using ewoS9R compared to rat S9, which most 
likely covers a broader range of enzyme activities. Despite 
the small differences in the calculated EC50 values, curves 
differ regarding the hillslope, resulting in larger differ-
ences for the EC10 values. Zebrafish embryos with pre-
metabolization were slightly more sensitive to TDCPP 
(LC50 4.8/5.2  µM) than embryos without pre-metaboli-
zation (LC50 5.9  µM), which in turn were slightly more 
sensitive than juvenile zebrafish (LC50 10.6  µM; [87]). 
Interestingly, after 48  h exposure in the FET, the addi-
tion of ewoS9R resulted in a significantly higher than the 
addition of pre-metabolization with the rat S9; likewise, 
the hill slopes were different, if compared to the results 
without metabolization. The stronger effects at 48  hpf 
might be due to transient increase of toxic metabolites 
at the beginning of the FET followed by time-dependent 
degradation during subsequent development [32, 33, 37].

In the case of BPA, significant detoxification was 
detected following addition of both S9 homogenates. As 
with TDCPP, the addition of both S9 homogenates led to 
similar EC50 values compared to the reference without 
metabolization, but the hillslope of the curve with rat S9 
deviated strongly from the reference without metaboliza-
tion, which led to stronger differences in the EC50 values. 
A direct comparison to AFT data was not possible, since 
50% mortality could not be reached with the concentra-
tion range used in this study. However, considering the 
increase of EC50 values after detoxification, an approxi-
mation to zebrafish AFT LC50 can be assumed. In con-
trast to 120  hpf, significant bioactivation after 48  hpf 
exposure in the FET was observed after pre-metaboliza-
tion with ewoS9R (reduced/no pigmentation, edemata, 
and reduced/no blood flow). Bioactivation in the FET at 
48 hpf, but detoxification at 120 hpf might reflect ambig-
uous data in the literature, which cover both bioactiva-
tion [65, 66] and detoxification [67, 68]. As for TDCPP, 
the transient formation of reactive metabolites followed 
by detoxification in subsequent stages of development 
might have triggered such a biphasic reaction of zebrafish 
metabolites to BPA in the FET. In fact, the presumably 
rapid development of metabolic capacities in zebrafish 
embryos from 72/96 hpf should also be considered for 
BPA metabolization [32, 34–37, 88]. Furthermore, hatch-
ing inhibition as a pronounced effect during later devel-
opment also reported by Scopel et al. [89] can, of course, 
only be observed at 120  hpf. Chemical analysis of BPA 
and potential metabolites might help to clarify the time 
course of (transient) formation of metabolites via S9 
homogenates or the embryos themselves.

To exclude reduced bioavailability due to binding of 
the test substance to the proteins of the S9 homogen-
ates as a reason for reduced toxicity as previously dem-
onstrated for other substance classes [90], additional 
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experiments were carried out without the energy car-
rier NADPH, which, however revealed that BPA was 
detoxified by the S9 homogenates, since the results 
without the energy carrier did not differ statistically 
from the reference without S9.

Due to precipitation at concentrations > 10  µM, 
no concentration-dependent embryotoxicity could 
be established for B[a]P, which is in line with litera-
ture AFT data on B[a]P, which also showed no toxic-
ity. Only Weigt et  al. [91] reported a very low LC50 
of 5.1  µM B[a]P in the FET. The difference could be 
related to the usage of 0.5% DMSO as a solvent, which 
may have improved the chorionic permeability of 
the compound [88]. B[a]P is bioactivated by the pres-
ence of CYP1A1/1A2/1B1, which was detected by the 
EROD assay in rat S9 and ewoS9R and was also already 
proven to be bioactivated in in  vitro assays by rat S9 
and ewoS9R [53].

As for B[a]P, exposure to CP did not result in dif-
ferences between FETs with and without pre-metab-
olization, and there was only a minor trend towards 
bioactivation. This observation, however, is not in line 
with literature, which report LC50 values of 2.0  µM 
(AFT, [92]) and 3.7  µM (FET, [93]). In fact, in our 
experiments, precipitation occurred at concentra-
tions > 100  µM, most likely due to the hydrophobic 
character of CP (logP of 4.98 [94]). Low bioavailability 
due to binding of CP to the vessels should have been 
avoided with the use of glass-coated well plates. In 
the FET study by Zhang et  al. [93], a semi-static test 
design was applied, and Jeon et  al. [92] conducted the 

AFT with glassware and acetone as solvent. Possibly 
the slightly different test conditions led to different 
outcomes.

Conclusions
To summarize, the implementation of an external pre-
metabolization step into the FET significantly increased 
the comparability with the AFT data for allyl alcohol (cf. 
Table 2). For the other test compounds, this clear conclu-
sion could not be drawn, and observed minor increases/
decreases of toxicity as well as putative approximations 
to AFT data due to the inclusion of pre-metabolization in 
FET cannot to be rated as biologically relevant. The simi-
larity of AFT and FET data (with or without pre-metab-
olization) for the biotransformable substances TDCPP, 
BPA, B[a]P and CP might well be due to comparable 
biotransformation of the substances by embryonic and 
juvenile zebrafish, or to a neglectable metabolization rate 
under the FET/AFT test conditions. Regarding the bio-
logical relevance of minor toxicity changes with metab-
olization, it should be mentioned that not only FET, 
but—and usually to a greater extent—also AFT data are 
subject to intra- and inter-laboratory variability [3]. Con-
ventional risk assessment is usually based on AFT data 
from different species (i.e., not only Danio rerio); thus, 
inter-species variability must also be considered when 
comparing and interpreting differences between FET and 
AFT data [3]. Nevertheless, FET data obtained within 
one laboratory conducted with and without the imple-
mentation of S9 homogenates can indicate if metabo-
lism significantly alters toxicity and, therefore, whether 

Table 2  Overview of toxicity changes via metabolization in the FET with Danio rerio at 120 h post-fertilization (hpf ) of the five model 
substances (allyl alcohol, tris(1,3-dichloro-2-propyl) phosphate, bisphenol A, benzo[a]pyrene and chlorpyrifos) and a possible resulting 
approximation to AFT data

Addtionally, the metabolism enzymes involved in metabolism processes are shown including references. A significant increase (↑), decrease (↓) or no significant 
change (–) in toxicity comparing the FET including pre-metabolization with the FET without external S9 homogenates is indicated

Significant toxicity 
change: FET vs. 
FET with pre-
metabolization

Approximation to AFT data? FET with pre-
metabolization vs. AFT

Likely involved metabolism 
enzymes

References

w/ rat S9 w/ ewoS9R w/ rat S9 w/ ewoS9R

Allyl alcohol ↑ ↑ FET data closer to AFT data via inclusion of a pre-
metabolization step

Alcohol dehydrogenases [39, 48, 49]

Tris(1,3-dichloro-
2-propyl) phos-
phate

↑ – AFT data already very similar to FET data 
with OR without pre-metabolization

CYPs 1A2, 2C19, 2D6, 2E1 [58]

Bisphenol A ↓ ↓ CYPs 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, 
2E1, 3A4, 3A5

[62–64]

Chlorpyrifos  −   −  CYPs 1A2, 2B6, 2C19, 3A4 [54–57]

Benzo[a]pyrene  −   −  Cannot be determined, since LC50 concentration 
derived from AFT could not be tested due to solu-
bility problems

CYPs 1A1, 1A2, 1B1 [52]
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metabolism might be relevant in the context of the tested 
sample.

Since a very good correlation between FET and AFT 
data has repeatedly been documented [14, 18, 22], FETs 
with pre-metabolization could be applied in the future 
specifically for selected cases only: (1) the methodology 
might be applied if existing data or QSAR data indicate 
relevant biotransformation of the substance. (2) Com-
plex environmental samples could also be tested in FET 
with and without the addition of S9 homogenates, since 
for such samples the impact of biotransformation on fish 
toxicity is extremely difficult to predict.

To further validate the FET with metabolism, other 
substances with and without metabolism should be 
tested for which FET and AFT data differ strongly (e.g., 
albendazole [40]). In addition, other endpoints such 
as early life stage behavior according to Irons et al. [99] 
could be investigated with a procedure including pre-
metabolization to investigate metabolization in the con-
text of neurotoxic substances. For example, behavioral 
changes could be investigated with the substance CP as 
it is metabolized to the neurotoxic metabolite CP-oxone 
[100].

In addition, to further increase the ecotoxicological rel-
evance of biotransformation processes, (biotechnologi-
cal) fish S9 should also be examined in the future [79]. 
In addition, cofactors required for phase II metabolism 
should be added to the assay in future studies, which 
could also be relevant for some substances [101]. Here, 
additional phase II cofactors would also have to be tested 
for their embryotoxicity, which might affect the concen-
tration of the S9 mixes or NADPH that can be applied. 
Furthermore, the inclusion of S9 homogenates into the 
FET could alter the uptake of the substances into the 
fish embryo cells and the cell excretion via transport-
ers, as the substances properties after metabolization are 
changed and thus fish embryo cellular transporters could 
be induced or inhibited via the metabolites [102–105]. 
Furthermore, a time-dependent chemical analysis of 
the metabolites formed by the zebrafish embryos or S9 
homogenates might help to gain further insights into the 
metabolism capacities of the different systems.

Overall, this study showed that the FET with metabo-
lization may be able to compensate for strong differences 
between FET and AFT data. Using this pre-metabolisa-
tion method, the predictive ability of the FET for toxicity 
to juvenile fish could be improved, if there is evidence of 
strong biotransformation of the sample. This may reduce 
or eliminate the need to use juvenile or adult vertebrates 
for acute ecotoxicological data in future risk assessment.
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